Photoacoustic thermal characterization of kaolinite clays

(Note: The full text of this document is currently only available in the PDF Version )

J. Alexandre, F. Saboya, B. C. Marques, M. L. P. Ribeiro, C. Salles, M. G. da Silva, M. S. Sthel, L. T. Auler and H. Vargas


Abstract

The usefulness of photoacoustic techniques in characterizing the thermal properties of kaolinite clays, which are a very abundant mineral in some regions of Brazil, was investigated. Different behavioural patterns are observed below and above a heating temperature of 950 °C and can be attributed to the change from metakaolinite to an amorphous three-dimensional mineral which crystallises to mullite and crystobalite above 1200 °C. The implications of the results in the manufacture of clay bricks are briefly considered. This is important in tropical regions where a knowledge of the thermal properties of materials used in the building construction industry is highly desirable.


References

  1. D. Bicanic, Photocoacoustic and Photothermal Phenomena III, Springer, Berlin, 1992 Search PubMed.
  2. A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors, North-Holland, New York, 1987 Search PubMed.
  3. A. Rosencwaig, Photoacoustic and Photoacoustic Spectroscopy, Wiley, New York, 1980 Search PubMed.
  4. D. P. Almond and P. M. Patel, Photothermal Science and Techniques, Chapman and Hall, London, 1996 Search PubMed.
  5. D. C. Fork and S. K. Herbert, Photochem. Photobiol., 1993, 57, 207 CAS.
  6. H. Vargas and L. C. M. Miranda, Phys. Rep., 1988, 161, 43 CrossRef CAS.
  7. A. C. Bento, H. Vargas and L. C. M. Miranda, Phys. Chem. Glasses, 1987, 61, 127 Search PubMed.
  8. P. Neto, H. Vargas, N. F. Leite and L. C. M. Miranda, Phys. Rev. B, 1990, 41, 9971 CrossRef.
  9. M. D. Dramicamni, Z. D. Restovski, P. M. Nikolic and D. M. Todorovic, Phys. Rev. B, 1995, 51, 14226 CrossRef.
  10. E. Marin, I. Riech, P. Dias, J. J. Alvarado-Gil, R. Baquero, A. Cruz Orea and H. Vargas, J. Appl. Phys., 1998, 83, 2604 CrossRef CAS.
  11. A. Calderon, J. J. Alvarado-Gil, Y. G. Garevich, A. Cruz-Orea, I. Delgadilho, H. Vargas and L. C. M. Miranda, Phys. Rev. Lett., 1997, 79, 5022 CrossRef CAS.
  12. A. Torres-Filho, N. F. Leite, L. C. M. Miranda, N. Cella and H. Vargas, J. Appl. Phys., 1989, 66, 97 CrossRef CAS.
  13. N. F. Leite, N. Cella, H. Vargas and L. C. M. Miranda, J. Appl. Phys., 1987, 61, 3025 CrossRef CAS.
  14. J. W. Nery, D. Pessoa, F. A. M. Reis, C. Vinha and H. Vargas, Analyst, 1987, 112, 1487 RSC.
  15. A. C. Pereira, L. M. Prioli, W. J. da Silva, H. Vargas, N. Cella and J. J. Alvarado-Gil, Plant Sci., 1994, 96, 96 CrossRef.
  16. J. J. Alvarado-Gil, H. Vargas, F. Sánchez-Sinencio, J. González-Fernández and L. C. M. Miranda, Opt. Eng., 1997, 36, 1.
  17. W. J. da Silva, B. C. Vidal, H. Vargas, A. C. Pereira, M. Zerbeto and L. C. M. Miranda, Nature (London), 1993, 417, 362.
  18. G. W. Brindley, Cerâmica, 1978, 24, 217 Search PubMed.
  19. E. R. Segnit and C. A. Anderson, Ceram. Bull., 1971, 50, 480 Search PubMed.
  20. S. Yariv, A. Nasser, K. H. Michaelian, I. Lapides, Y. Deutsch and N. Lahav, Thermochem. Acta, 1994, 234, 275 Search PubMed.
  21. P. Souza Santos, Tecnologia de Argilas, Vol. 1: Fundamentos, Edgar Bluecher, São Paulo, 1975 Search PubMed.
  22. M. Thiry, Technique de Preparation dos Mineraux Argileux en Vue de l’Analyse aux Rayon X, CNRS, Centre de Sédimentologie et Géochimie de la Surface, Strasbourg, 1974 Search PubMed.
  23. G. M. Sessler, J. Acoust. Soc. Am., 1963, 35, 1354.
  24. A. Rosencwaig and A. Gersho, J. Appl. Phys., 1976, 47, 46 CrossRef.
  25. H. M. Richardson, in X-Ray Identification and Crystal Structure of Clay Minerals, ed. G. W. Brindley, Mineralogical Society, London, 1951, p. 76 Search PubMed.
  26. G. W. Brindley and M. Nakahira, Nature (London), 1958, 181, 1333 CAS.
  27. G. W. Brindley and M. Nakahira, J. Am. Ceram. Soc., 1958, 42, 319.
  28. R. Zallen, The Physics of Amorphous Solids, Wiley, New York, 1983, p. 20 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.