In-tube solid phase micro-extraction–gas chromatography of volatile compounds in aqueous solution

(Note: The full text of this document is currently only available in the PDF Version )

Boon Chong Dennis Tan, Philip J. Marriott, Paul D. Morrison and Hian Kee Lee


Abstract

This paper describes the use of conventional coated capillary gas chromatography columns for sorption of organic solutes from aqueous solution, with subsequent gas chromatographic analysis. The essential principles are similar to those of solid phase extraction (SPE) and solid phase micro-extraction (SPME); this approach may be referred to as in-tube solid phase micro-extraction (ITSPME). The technique was evaluated using toluene in water as the initial test solute, and a mixture of BTEX solutes (benzene, toluene, ethylbenzene, xylenes) in Milli-Q water was used to further characterise ITSPME. A 1 m length of capillary GC column was used for sorption of analytes from aqueous solution passed through the capillary by using nitrogen pressure. Collection of small fractions of aqueous solution issuing from the capillary enabled a sorption profile to be generated, with initial fractions depleted in analyte. A Boltzmann curve could be fitted to the sorption profile data, exhibiting good agreement with experimental data. For recovery of sorbed toluene, a single 100 µL aliquot of hexane was passed through the column as a stripping solvent. The back-extraction step was quantitative. Equilibrium extraction of solutes shows that the total amount of recovered solute is proportional to its initial concentration in the extracted aqueous solution and allows distribution constants to be readily estimated. For BTEX solutes, K values were similar to those reported for SPME and literature Kow values. For toluene, log K decreases from 2.47 to 1.48 when the sorption column temperature increases from 20 to 30 °C; adding salt or reducing the pH of the aqueous solution increases the degree of extraction of phenols, agreeing with general considerations on solute partitioning behaviour.


References

  1. Z. Zhang, M. J. Yang and J. Pawliszyn, Anal. Chem., 1994, 66, 844A CrossRef CAS.
  2. D. Noble, Anal. Chem., 1993, 65, 693A CrossRef CAS.
  3. C. L. Arthur and J. Pawliszyn, Anal. Chem., 1990, 62, 2145 CrossRef CAS.
  4. J. R Dean, W. R. Tomlinson, V. Makovskaya, R. Cumming, M. Hetheridge and M. Comber, Anal. Chem., 1996, 68, 130 CrossRef CAS.
  5. S. P. Thomas, R. Sri Ranjan, G. R. B. Webster and L. P. Sarna, Environ. Sci. Technol., 1996, 30, 1521 CrossRef CAS.
  6. J. Pawliszyn and R. Eisert, Anal. Chem., 1997, 69, 3140 CrossRef CAS.
  7. R. G. Belardi and J. Pawliszyn, Water Pollut. Res. J. Can., 1989, 24, 179 Search PubMed.
  8. C. L. Arthur, D. W. Potter, K. D. Buchholz, S. Motlagh and J. Pawliszyn, LC-GC, 1992, 10, 656 Search PubMed.
  9. K. Grob, Split and Splitless Injection in Capillary Gas Chromato-graphy with some remarks on PTV Injection; Huthig Verlag, Heidelberg, Germany, 1993 Search PubMed.
  10. C. L. Arthur, L. M. Killam, K. D. Buchholz, J. Pawliszyn and J. P. Berg, Anal. Chem., 1992, 64, 1960 CrossRef CAS.
  11. D. W. Potter and J. Pawliszyn, J. Chromatogr., 1992, 625, 247 CrossRef CAS.
  12. C. L. Arthur, L. M. Killam, S. Motlagh, D. W. Potter and J. Pawliszyn, Environ. Sci. Technol., 1992, 26, 979 CAS.
  13. C. T. Chiou, D. W. Schmedding and M. Manes, Environ. Sci. Technol., 1982, 16, 4 CAS.
  14. K. Verschuren, Handbook of Environmental Data on Organic Chemicals, Van Nostrand Reinhold, New York, USA, 2nd edn., 1983 Search PubMed.
  15. C. T. Chiou, Environ. Sci. Technol., 1985, 19, 57.
  16. L. P. Sarna, G. R. B. Webster, M. R. Friesen-Fischer and R. Sri Ranjan, J. Chromatogr. A, 1994, 677, 201 CrossRef CAS.
  17. T. Fujita, J. Iwasa and C. Hansch, J. Am. Chem. Soc., 1964, 86, 5175 CrossRef CAS.
  18. R. M. Kinghorn and P. J. Marriott, Anal. Chem., 1997, 69, 2582 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.