Response characteristics of optical sensors for oxygen: a model based on a distribution in τoand kq

(Note: The full text of this document is currently only available in the PDF Version )

Andrew Mills


Abstract

The typical response characteristics of most optical oxygen sensors include downward curving Stern–Volmer plots and often multi-exponential luminescence decay profiles in the absence and presence of oxygen. The wide range of different response features exhibited by optical oxygen sensors is usually attributed to different degrees of heterogeneity in the sensor films. This heterogeneity is described in this paper by a log-Gaussian distribution in the natural luminescent lifetime of the oxygen-quenchable lumophore, τo, and the quenching rate constant, kq. A ‘log-Gaussian distribution in τo and kq’ model is used to generate theoretical response profiles which exhibit the same disparate range of features as real optical oxygen sensors. However, unlike other models, such as the ‘two-site’ model, the ‘log-Gaussian distribution in τo and kq’ model generates model parameter values which are physically plausible and consistent at all partial pressures of oxygen, pO2. The model is used to fit successfully the Stern–Volmer plots and luminescent decay profiles reported for a number of different optical oxygen sensors. For each of the real sensors examined, the values of the model parameters KSV,mdl, ρ1, ρ2 and τo,mdl which give the best fit to the observed data are reported. The latter data allows prediction of the response features of the associated optical oxygen sensor at any value of pO2


References

  1. A. Mills, Platinum Met. Rev., 1997, 41, 115 Search PubMed.
  2. O. S. Wolfbeis, in Fibre Optic Chemical Sensors, ed. O. S. Wolfbeis, Vol II, CRC Press, Boca Ranton, FL, 1991, ch. 10 Search PubMed.
  3. A. Mills, Sen. Actuators B, 1998, 51, 69 CrossRef.
  4. E. R. Carraway, J. N. Demas, B. A. Degraff and J. R. Bacon, Anal. Chem., 1991, 63, 337 CrossRef CAS.
  5. L. Sacksteder, J. N. Demas and B. A. DeGraff, Anal. Chem., 1993, 65, 3480 CrossRef CAS.
  6. J. N. Demas, B. A. DeGraff and W. Xu, Anal. Chem., 1995, 67, 1377 CrossRef CAS.
  7. E. R. Carraway, J. N. Demas and B. A. DeGraff, Anal. Chem., 1991, 63, 332 CrossRef CAS.
  8. J. N. Demas and B. A. DeGraff, SPIE, 1992, 1681, 2 Search PubMed.
  9. J. N. Demas and B. A. DeGraff, Sens. Actuators, 1993, 11, 35 Search PubMed.
  10. A. Mills, Analyst, 1999, 124, 1301 RSC.
  11. M. L. Bossi, M. E. Daraio and P. F. Aramendia, J. Photochem. Photobiol., 1999, 120, 15 Search PubMed.
  12. W. J. Albery, P. N. Bartlett, C. P. Wilde and J. R. Darwent, J. Am. Chem. Soc., 1985, 107, 1854 CrossRef CAS.
  13. G. T. Brown, J. R. Darwent and P. D. I. Fletcher, J. Am. Chem. Soc., 1985, 107, 6446 CrossRef CAS.
  14. A. Mills, P. Douglas and A. Green, J. Photochem. Photobiol. A, 1990, 53, 127 CrossRef CAS.
  15. A. Mills, P. Douglas, A. Green and G. Williams, Electrochemistry in Colloids and Dispersions, ed. R. A. Mackay and J. Texter, VCH Publishers, Inc., New York, 1992, ch. 29 Search PubMed.
  16. P. Hartmann and W. Trettnak, Anal. Chem., 1996, 68, 2615 CrossRef CAS.
  17. W. W.-S. Lee, K.-Y. Wong and X.-M. Li, Anal. Chem., 1993, 65, 255 CrossRef CAS.
  18. H. N. McMurray, P. Douglas, C. Busa and M. S. Garley, J. Photochem. Photobiol., 1994, 80, 283 Search PubMed.
  19. S. Draxler, M. E. Lippitsch, I. Klimant, H. Kraus and O. S. Wolfbeis, J. Phys. Chem., 1999, 99, 3162 Search PubMed.
  20. P. Hartmann, M. J. P. Leiner and M. E. Lippitsch, Anal. Chem., 1995, 67, 88 CrossRef CAS.
  21. M. E. Daraio, personal communication.
Click here to see how this site uses Cookies. View our privacy policy here.