Linear calibration function of luminescence quenching-based optical sensor for trace oxygen analysis†

(Note: The full text of this document is currently only available in the PDF Version )

Martin M. F. Choi and Dan Xiao


Abstract

A mathematical response function derived from the Stern–Volmer equation was successfully applied to calibrate an optical oxygen (O2) sensor using tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) ditetrakis(4-chlorophenyl)borate adsorbed on silica gel as the O2-sensitive material. The calibration of this optical sensor can be simply done by plotting the reciprocal of the luminescence intensity against the O2 concentration (1/I vs. [O2]). A single air sample injection method combined with an exponential dilution technique produces O2 standards at various concentrations. The modified Stern–Volmer plots demonstrate excellent agreement with the well known Stern–Volmer plot (I0/I vs. [O2]). The proposed method has the advantages of simple O2 standard preparation and no I0 data being needed for calibration. The response and recovery times of the optical O2 sensor are less than 0.2 and 1 s, respectively. The limit of detection is 2.6–3.6 ppm v/v. The photostability of the O2-sensitive material is good and there is no sign of photodegradation after 12 h of continuous use.


References

  1. M. C. Hitchman, Measurement of Dissolved Oxygen, Wiley, New York, 1978, p. 130 Search PubMed.
  2. E. R. Carraway, J. N. Demas, B. A. DeGraff and J. R. Bacon, Anal. Chem., 1991, 63, 337 CrossRef CAS.
  3. X.-M. Li, F.-C. Ruan and K. Y. Wong, Analyst, 1993, 118, 289 RSC.
  4. B. D. MacCraith, C. M. McDonagh, G. O'Keeffe, E. T. Keyes, J. G. Vos, B. O'Kelly and J. F. McGlip, Analyst, 1993, 118, 385 RSC.
  5. B. D. MacCraith, G. O'Keeffe, A. K. McEvoy and C. McDonagh, Proc. SPIE-Int. Soc. Opt. Eng., 1994, 2293, 110 Search PubMed.
  6. W. Xu, R. C. McDonough III, B. Langsdorf, J. N. Demas and B. A. DeGraff, Anal. Chem., 1994, 66, 4133 CrossRef CAS.
  7. M. K. Krihak and M. R. Shahriari, Electron. Lett., 1996, 32, 240 CrossRef CAS.
  8. A. Mills and M. Thomas, Analyst, 1997, 122, 63 RSC.
  9. N. Velasco-Garcia, M. J. Valencia-Gonzalez and M. E. Díaz-García, Analyst, 1997, 122, 1405 RSC.
  10. H. Chuang and M. A. Arnold, Anal. Chim. Acta, 1998, 368, 83 CrossRef CAS.
  11. K. P. McNamara, X. Li, A. D. Stull and Z. Rosenzweig, Anal. Chim. Acta, 1998, 361, 73 CrossRef CAS.
  12. A. Mills and M. D. Thomas, Analyst, 1998, 123, 1135 RSC.
  13. O. S. Wolfbeis, M. J. P. Leiner and H. E. Posch, Mikrochim. Acta, 1986, III, 359.
  14. B. Meier, T. Werner, I. Klimant and O. S. Wolfbeis, Sens. Actuators B, 1995, 29, 240 CrossRef.
  15. H. He, R. J. Fraatz, M. J. P. Leiner, M. M. Rehn and J. K. Tusa, Sens. Actuators B, 1995, 29, 246 CrossRef.
  16. P. Hartmann, M. J. P. Leiner and M. E. Lippitsch, Sens. Actuators B, 1995, 29, 251 CrossRef.
  17. V. O. Stern and M. Volmer, Phys. Z., 1919, 20, 183 Search PubMed.
  18. I. Klimant and O. S. Wolfbeis, Anal. Chem., 1995, 67, 3160 CrossRef CAS.
  19. M. M. F. Choi and O. L. Tse, Anal. Chim. Acta, 1999, 378, 127 CrossRef CAS.
  20. J. E. Lovelock, Anal. Chem., 1961, 33, 162 CrossRef CAS.
  21. R. S. Barratt, Analyst, 1981, 106, 817 RSC.
  22. M. M. F. Choi and D. Xiao, Anal. Chim. Acta, 1999, 387, 197 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.