An impregnated filter sampling approach for determination of hydrogen cyanide in air by a kinetic-fluorimetric micellar method

(Note: The full text of this document is currently only available in the PDF Version )

D. Sicilia, S. Rubio, D. Pérez-Bendito, N. Maniasso and E. A. G. Zagatto


Abstract

A new hydrogen cyanide collecting device based on the use of borosilicated micro-fibreglass filters impregnated with sodium hydroxide was proposed and its performance assessed. It was used for the determination of hydrogen cyanide in air by a kinetic-fluorimetric method within the 5–600 ng ml–1 range. The proposed method is based on the catalytic effect of cyanide on the oxidation of pyridoxal-5′-phosphate (PALP) by dissolved oxygen in the cationic micellar medium afforded by dodecyltrimethylammonium bromide (DTAB). The reaction was monitored by measuring the fluorescence of the oxidation product [4-pyridoxic acid 5-phosphate (PAP)]. The improved sensitivity provided by DTAB micelles was due to an increase in the quantum yield of PAP when it was concentrated on the DTAB micellar surface, resulting in an apparently increased reaction rate. The relative standard deviation for 50 ng ml–1 of cyanide was 1.7%. Common interferences, such as those arising from carbon dioxide, nitrogen oxides (NOx) and sulfur oxides (SOx), were found not to affect the hydrogen cyanide determination. The interference from hydrogen sulfide could be detected (e.g. the kinetic curve recorded showed an induction period) and amended.


References

  1. P. Kaur, S. Upadhyay and V. K. Gupta, Analyst, 1987, 112, 1681 RSC.
  2. V. Agrawal, L. Cherian and V. K. Gupta, Int. J. Environ. Anal. Chem., 1991, 45, 235 CAS.
  3. S. Amlathe and V. K. Gupta, Fresenius' J. Anal. Chem., 1990, 338, 615 CrossRef CAS.
  4. S. Rubio, A. Gómez-Hens and M. Valcárcel, Talanta, 1984, 31, 783 CrossRef CAS.
  5. T. W. Dolzine, G. G. Esposito and D. S. Rinehart, Anal. Chem., 1982, 54, 470 CrossRef CAS.
  6. J. Li, D. Petelenz and J. Janata, Electroanal., 1993, 5, 791 CAS.
  7. J. F. Alder, A. E. Bentley and P. K. P. Drew, Anal. Chim. Acta, 1986, 182, 123 CrossRef CAS.
  8. J. Langmaier and J. Janata, Anal. Chem., 1992, 64, 523 CrossRef CAS.
  9. S. M. Jaward and J. F. Alder, Anal. Chim. Acta, 1991, 246, 259 CrossRef.
  10. F. Zilio-Grandi, R. Basei and L. Szpyrkowicz, Ann. Chim., 1987, 77, 899 CAS.
  11. P. R. Fielden, S. J. Smith and J. F. Alder, Analyst, 1986, 111, 695 RSC.
  12. B. R. Endecott, D. C. Sanders and A. K. Chaturvedi, J. Anal. Toxicol., 1996, 20, 189 CAS.
  13. E. Miralles, D. Prat, R. Compañó and M. Granados, Analyst, 1997, 122, 553 RSC.
  14. D. Pérez-Bendito and S. Rubio, Trends Anal. Chem., 1993, 12, 9 CrossRef CAS.
  15. S. Rubio and D. Pérez-Bendito, Anal. Chim. Acta, 1989, 224, 185 CrossRef CAS.
  16. M. L. Lunar, S. Rubio and D. Pérez-Bendito, Anal. Chim. Acta, 1990, 237, 207 CrossRef.
  17. D. Sicilia, S. Rubio and D. Pérez-Bendito, Talanta, 1991, 38, 1147 CrossRef CAS.
  18. D. Sicilia, S. Rubio, D. Pérez-Bendito and D. , Anal. Chem., 1992, 64, 1490 CAS.
  19. E. Athanasiou-Malaki and M. A. Koupparis, Anal. Chim. Acta, 1989, 219, 295 CrossRef CAS.
  20. H. A. Archontaki, M. A. Koupparis and C. E. Efstathiou, Analyst, 1989, 114, 591 RSC.
  21. P. Mukerjee and K. J. Hysels, Critical Micelle Concentrations of Aqueous Surfactant Systems, NSRDS-NBS 36, U.S. Department of Commerce, Washington, DC, 1971 Search PubMed.
  22. P. Linares, M. D. Luque de Castro and M. Valcárcel, Anal. Chim. Acta, 1984, 161, 257 CrossRef CAS.
  23. F. Morales, D. Sicilia, S. Rubio and D. Pérez-Bendito, Anal. Chim. Acta, 1997, 345, 87 CrossRef CAS.
  24. G. L. Long and J. D. Winefordner, Anal. Chem., 1983, 55, 712A CrossRef CAS.
  25. G. Baumbach, in Air Quality Control, ed. U. Förstner, R. J. Murphy and W. H. Rulkens, Springer, Berlin, 1996, ch. 4 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.