Typification of vinegars from Jerez and Rioja using classical chemometric techniques and neural network methods

(Note: The full text of this document is currently only available in the PDF Version )

María José Benito, M. Cruz Ortiz, M. Sagrario Sánchez, Luis A. Sarabia and Montserrat Iñiguez


Abstract

This study demonstrates that it is possible to characterise the vinegars obtained from wines with Certified Denomination of Origin Rioja (66 vinegars) and Jerez (18 vinegars) according to their chemical composition. SIMCA was used, along with cross-validation, as a modelling multivariate technique. In order to demonstrate that no better sensitivity and specificity of SIMCA can be achieved, a comparison was made with the results obtained by using GINN, which is a neural network with stochastic learning, which directly optimises both parameters. It was found that 92.9% of the classifications obtained by cross-validation with SIMCA were accurate, whereas with GINN 88.7% were correct (median of 10 training steps). The sensitivity and specificity obtained with SIMCA were up to 85% for Rioja vinegars and 95% for Jerez vinegars. The neural network gives higher values than those mentioned above for these parameters which confirms their optimal character. The modelling and discriminant capacities of the 20 chemical variables were also studied.


References

  1. C. Llaguno, El Vinagre de vino en la Alimentación, presented at II Simposio Internacional del Vino, Bebida y Alimento del Hombre, Pavia, 1984.
  2. M. C. García, Aliment., Equip. Tecnol., 1996, 8, 79 Search PubMed.
  3. H. Martens and H. Russwurm, Jr., Food Research and Data Analysis, Applied Science, Barking, 1983 Search PubMed.
  4. M. Forina, S. Lanteri and C. Armanino, Topics in Current Chemistry, ed. M. J. S. Dewar, J. D. Dunitz, K. Hafner, E. Heilbronner, S. Ito, J.-M. Lehn, K. Niedenzu, K. N. Raymond, C. W. Rees, F. Vögtle and G. Wittig, Springer-Verlag, Berlin, 1987, pp. 91–144 Search PubMed.
  5. S. Wold, C. Albano, W. J. Dunn, III, K. Esbensen, S. Hellberg, E. Johansson and M. Sjostrom, M. , in Food Research and Data Analysis, ed. H. Martens and H. Russwurm, Jr., Applied Science, Barking, 1983, pp.147–188 Search PubMed.
  6. S. Wold, C. Albano, W. J. Dunn, III, U. Edlund, K. Esbensen, P. Geladi, S. Hellberg, E. Johansson, W. Lindberg and M. Sjostrom, in Chemometrics, Mathematics and Statistics in Chemistry, ed. B. R. Kowalski, Reidel, Dordrecht, 1984, pp. 17–96 Search PubMed.
  7. M. Forina, G. Drava and R. Leardi, Chemometrics in Transparencies, University of Genova, Genova, 1997 Search PubMed.
  8. M. S. Sánchez, PhD Thesis, University of Valladolid, 1997.
  9. M. S. Sánchez and L. A. Sarabia, Anal. Chim. Acta, 1997, 348, 533 CrossRef.
  10. R. Jimenez, in IV Magister de Viticultura y Enologia, University of La Rioja, Logroño, 1992 Search PubMed.
  11. M. C. Astorga, in V Magister de Viticultura y Enologia, University of La Rioja, Logroño, 1993 Search PubMed.
  12. A. Martínez, in VI Magister en Viticultura y Enologia, University of La Rioja, Logroño, 1994 Search PubMed.
  13. E. M. Perales, in VII Magister en Viticultura y Enologia, University of La Rioja, Logroño, 1995 Search PubMed.
  14. E. Cristóbal, in VIII Magister en Viticultura y Enologia, University of La Rioja, Logroño, 1996 Search PubMed.
  15. M. Forina, S. Lanteri, C. Armanino, R. Leardi and G. Drava, PARVUS: an Extendable Package of Programs for Data Explorative Analysis, Clasification and Regression Analysis, Release 1.3, Elsevier, Amsterdam, 1994 Search PubMed.
  16. STATGRAPHICS Plus for Windows, Version 2.1, Microsoft, Seattle, 1990–95 Search PubMed.
  17. MATLAB, High-Performance Numeric Computation and Visualization Software, Version 4.0 for Windows, MathWorks, Natick, MA, 1984–1992 Search PubMed.
  18. M. Demuth and M. Beale, Neural Network Toolbox User's Guide, MathWorks, Natick, MA, 1993.
  19. M. C. Ortiz, J. A. Saez, J. López and J. , Analyst, 1993, 118, 1009 Search PubMed.
  20. M. I. Guerrero, F. J. Heredia and A. M. Troncoso, J. Sci. Food Agric., 1994, 66, 209 CAS.
  21. D. L. Massart and L. Kaufman, The Interpretation of Analytical Chemical Data by Use of Cluster Analysis, Wiley, New York, 1983 Search PubMed.
  22. L. Kaufman and P. J. Rousseeuw, Finding Groups in Data, Wiley, New York, 1990 Search PubMed.
  23. M. A. Sharaf, D. L. Illman and B. R. Kowalski, Chemometrics, Wiley, New York, 1986 Search PubMed.
  24. I. T. Jolliffe, Principal Component Analysis, Springer, New York, 1986 Search PubMed.
  25. J. E. Jackson, A User's Guide to Principal Components, Wiley, New York, 1991 Search PubMed.
  26. M. I. Guerrero, C. Herce-Pagliai, A. M. Cameán, A. M. Troncoso and A. G. González, Talanta, 1997, 45, 379 CrossRef CAS.
  27. M. P. Derde, L. Kaufman and D. L. Massart, J. Chemom., 1989, 3, 375.
  28. E. H. L. Aarts, A. E. Eiben and K. M. van Hee, A General Theory of Genetic Algorithms, Department of Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven, 1989 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.