A flexible method of carbonate determination using an automatic gas analyzer equipped with an FTIR photoacoustic measurement chamber

(Note: The full text of this document is currently only available in the PDF Version )

Wenxin Liu, Zhongxi Sun, Maine Ranheimer, Willis Forsling, Wenxin Liu and Hongxiao Tang


Abstract

A Fourier transform infrared spectrometer was employed to determine automatically the total inorganic carbonate (TIC) in solids and waters, based on active photoacoustic absorption of infrared light by carbon dioxide. A 2.0 l reactor, connected to the spectrometer, is immersed in water-bath at 20 °C. After purging with pure N2, 5 ml of 0.5 mol l–1 HClO4 are injected into 50 ml of solid suspension or solution with continuous stirring. The specific absorption of infrared light by the CO2 evolved induces corresponding fluctuations of temperature and pressure in a measurement chamber. Accordingly, photoacoustic signals, with frequencies dependent on the absorbed wavelengths, are generated and measured by the chamber microphones in the form of an absorption spectrum and concentration. For solids, the method exhibits a linear response up to 120 mg of CaCO3 with a detection limit of 0.02 mg; in the case of waters, these figures of merit are 36.4 mmol l–1 and 3 µmol l–1 NaHCO3, respectively. Since proton consumption by TIC in clay minerals may commonly influence the evaluation of surface acid–base properties, the methodology was applied to determine TIC in three natural illite samples of different origins. In addition, some potential interferences and modifications of this method are discussed.


References

  1. Q. Du, Z. X. Sun, W. Forsling and H. X. Tang, J. Colloid Interface Sci., 1997, 187, 221 CrossRef CAS.
  2. U. Fiedler, E. H. Hansen and J. Ruzicka, Anal. Chim. Acta, 1975, 74, 423 CrossRef CAS.
  3. X. L. Su, L. H. Nie and S. Z. Yao, Anal. Chim. Acta, 1997, 349, 143 CrossRef CAS.
  4. A. Perez, S. Garrigues and M. de la Guardia, Anal. Chim. Acta, 1998, 358, 235 CrossRef.
  5. M. J. Little and P. D. Wentzell, Anal. Chim. Acta, 1995, 309, 283 CrossRef CAS.
  6. T. Aoki, Y. Fujimaru, Y. Oka and K. Fujie, Anal. Chim. Acta, 1993, 284, 167 CrossRef CAS.
  7. V. Kubàñ and P. K. Dasgupta, Talanta, 1993, 40, 831 CrossRef CAS.
  8. D. A. Dunn, J. Sediment. Petrol., 1980, 50, 631 Search PubMed.
  9. J. Ashworth, Commun. Soil. Sci, Plant Anal., 1997, 28, 841 Search PubMed.
  10. R. G. Amundson, J. Trask and E. Pendall, Soil Sci. Soc. Am. J., 1988, 52, 880 CAS.
  11. D. D. Siemer, Anal. Chem., 1987, 59, 2439 CrossRef CAS.
  12. E. Ben-Dor and A. Nanin, Appl. Spectrosc., 1990, 44, 1064.
  13. S. H. Lee, Z. U. Bae, K. W. Kim, D. K. Yang and S. S. Choi, Anal. Sci., 1997, 13, 93 CAS.
  14. S. J. Lane and J. A. Dalton, Am. Mineral., 1994, 79, 745 CAS.
  15. A. P. Wade, D. B. Sibbald, M. N. Bailey, R. M. Belchamber, S. Bittman, J. A. McLean and P. D. Wentzell, Anal. Chem., 1991, 63, 497A CAS.
  16. User Manual for Gas Analyzer Type 1301, Brüel&Kjær, Ballerup, Denmark, 1993 Search PubMed.
  17. J. A. Howell and R. E. Sutton, Anal. Chem., 1998, 70, 107 CrossRef.
  18. W. X. Liu, Z. X. Sun, W. Forsling, Q. Du and H. X. Tang, J. Colloid Interface Sci., submitted for publication Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.