A model of thermally generated pH gradients in tapered capillaries

(Note: The full text of this document is currently only available in the PDF Version )

Xiao-Hong Fang, Marc Adams and Janusz Pawliszyn


Abstract

Potential applied at the two ends of a tapered capillary can produce an electric field and a pH gradient at the same time. These fields will effect electrophoretic separation, if the diameters of capillaries are not uniform. In some cases these gradients can be used to our advantage. For example, this approach provides a simple way to perform isoelectric focusing without carrier ampholytes as Joule heat produced in the tapered capillary generates a temperature gradient, which in turn produces a pH gradient. A mathematical model is developed to analyze the temperature distribution along the tapered capillary axis. According to the model, the span of the temperature gradient increases with the increase in heat generated per volume of the capillary channel, and the slope of the gradient is determined by the steepness of the taper. The temperature profile predicted by the model is verified by measuring temperatures at the outer wall of the capillary. The calculated pI value of a sample protein, hemoglobin, which focuses in the thermally generated pH gradient, is near to its literature value. The model provides us with a better understanding of the heat transfer in a tapered capillary and theoretically demonstrates the potential of capillary isoelectric focusing separation with a tapered channel.


References

  1. A. Kolin, in Isoelectric Focusing, ed. N. Catsimpoolas, Academic Press, New York, USA, 1976, pp. 1–11 Search PubMed.
  2. S. Hjerten and M-D. Zhu, J. Chromatogr., 1985, 346, 265 CrossRef CAS.
  3. S. Hjerten, in Capillary Electrophoresis: Theory and Practice, ed. P. D. Grossman and J. C. Colburn, Academic Press, New York, USA, 1992, pp. 191–214 Search PubMed.
  4. T. Pritchett, in Molecular Biology: Current Innovations and Future Trends, ed. A. M. Griffin and H. G. Griffin, Horizon Scientific Press, Norwich, Norfolk, UK, 1995, pp. 127–145 Search PubMed.
  5. X. Liu, Z. Sosic and I. S. Krull, J. Chromatogr., 1996, 735, 165 CrossRef CAS.
  6. H. Rilbe, J. Chromatogr., 1978, 159, 193 CrossRef CAS.
  7. R. A. Mosher, W. Thormann, A. Graham and M. Bier, Electrophoresis, 1985, 6, 545 CAS.
  8. O. Sova, J. Chromatogr., 1985, 320, 15 CrossRef CAS.
  9. R. L. Prestidge and M. T. Hearn, Anal. Biochem., 1977, 97, 95 CrossRef.
  10. A. Chrambach and N. Y. Nguyen, in Electrofocusing and Isotachophoresis, ed. B. J. Radola and D. Graesslin, Walter de Gruyter & Co., Berlin, Germany 1977, pp. 51–58 Search PubMed.
  11. L. M. Hjelmeland and A. Chrambach, Electrophoresis, 1983, 4, 20 CAS.
  12. G. V. Troitski, V. P. Savialov, I. F. Kirjukhin, V. M. Abramov and G. J. Agitski, Biochim. Biophys. Acta, 1975, 400, 24.
  13. S. J. Luner and A. Kolin, Proc. Natl. Acad. Sci. U.S.A., 1970, 66, 898–903 CAS.
  14. C. H. Lochmuller, S. J. Breiner and C. S. Ronsick, J. Chromatogr., 1989, 480, 293 CrossRef CAS.
  15. P. Lundahl and S. Hjerten, Ann. N. Y. Acad Sci., 1973, 209, 94 CAS.
  16. C. H. Lochmuller and C. S. Ronsick, J. Chromatogr., 1991, 249, 297 CAS.
  17. J. Pospichal, M. Deml and P. Bocek, J. Chromatogr., 1993, 638, 179 CrossRef CAS.
  18. J. Pawliszyn and J. Wu, J. Microcolumn Separations, 1993, 5, 397 Search PubMed.
  19. E. Grushka, R. M. McCormik and J. J. Kirkland, Anal. Chem., 1989, 6, 241 CrossRef.
  20. P. D. Grossman, in Capillary Electrophoresis: Theory and Practice, ed. P. D. Grossman and J. C. Colburn, Academic Press, New York, USA, 1992, pp. 5–9 Search PubMed.
  21. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solid, Clarendon Press, Oxford, UK, 2nd edn., 1986, pp. 133–135 Search PubMed.
  22. M. Mikheyev, Fundamentals of Heat Transfer, Mir Publishers, Moscow, Russia, 1968, pp. 73–81 Search PubMed.
  23. A. Palm, C. Lindh, S. Hjerten and J. Pawliszyn, Electrophoresis, 1996, 17, 766 CAS.
  24. P. G. Righetti, Isoelectric Focusing: Theory, Methodology and Applications, Elsevier Biomedical Press, Amsterdam, The Netherlands, 1983 Search PubMed.
  25. L. P. Vonguyen, Isoelectric Focusing With Cone-shaped Capillaries, MSc Thesis, University of Waterloo, Waterloo, Canada, 1995 Search PubMed.
  26. R. G. Bates and H. B. Hetzer, J. Phys. Chem., 1961, 65, 667 CAS.
  27. D. D. Perrin and B. Dempsey, Buffers for pH and Metal Ion Control, Champman and Hall Ltd., London, UK, 1974, pp. 157–163 Search PubMed.
  28. R. M. C. Dawson, D. C. Elliott, W. H. Elliott and K. M. Jones, Data for Biochemical Research, Clarendon Press, Oxford, UK, 3rd edn., 1986, pp. 423–425 Search PubMed.
  29. S. Fredriksson, in Electrofocusing and Isotachophoresis, ed. B. J. Radola and D. Graesslin, Walter de Gruyter & Co., Berlin, Germany, 1977, pp. 71–83 Search PubMed.
  30. P. G. Righetti, G. Tudor and K. Ek, J. Chromatogr., 1981, 220, 115 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.