Measurement of amorphous ferric phosphate to assess iron bioavailability in diets and diet ingredients

(Note: The full text of this document is currently only available in the PDF Version )

Raymond B. Willis and Philip R. Allen


Abstract

A method of measuring amorphous ferric phosphate in the presence of crystalline ferric phosphate is described. This procedure is important because there appears to be a big difference in availability between the amorphous and crystalline forms of ferric phosphate. This difference has been proven for two situations. In the first situation, when amorphous ferric phosphate is used as the source of iron for gypsy moths, growth is normal, but if the crystalline form is used, results are identical to the case when no iron is used. In the second situation, several plant species have been reported to grow much better when amorphous ferric phosphate is used instead of crystalline ferric phosphate as the source of phosphate in fertilizer. Differentiation of the amorphous from the crystalline uses citrate solutions that extract the amorphous form but not the crystalline form. The procedure was optimized for three different sample forms: agar based artificial diet, Wesson salt† (a salt mixture containing all recommended minerals for insect diets), and pure ferric phosphate. A method for overcoming a problem with turbidity that occurs when analyzing some prepared diets is also described.


References

  1. P. R. Henry and E. R. Miller, in Bioavailability of Nutrients for Animals—Amino acids, Minerals, and Vitamins, ed. C. B. Ammerman, D. H. Baker and A. J. Lewis, Academic Press, New York, London, 1995, p. 171 Search PubMed.
  2. S. J. Fairweather-Tait, M. J. Minski and D. P. Richardson, Br. J. Nutr., 1983, 50, 51 Search PubMed.
  3. W. L. Lindsay and J. D. DeMent, Plant Soil, 1961, 14, 118 Search PubMed.
  4. A. S. R. Juo and B. G. Ellis, Soil Sci. Soc. Am. Proc., 1968, 32, 216 Search PubMed.
  5. R. Ballard and W. L. Pritchett, Soil Sci. Soc. Am. Proc., S, 1975, 39, 537 Search PubMed.
  6. N. S. Bolan, A. D. Robson and N. J. Barrow, Plant Soil, 1987, 99, 401 Search PubMed.
  7. T. M. ODell, M. A. Keena and R. B. Willis, Ann. Entomol. Soc. Am., 1997, 90, 149 Search PubMed.
  8. R. B. Willis and M. E. Montgomery, Anal. Chem., 1994, 66, 1832 CrossRef CAS.
  9. P. H. Hsu, Soil Sci. Soc. Am. Proc., 1982, 46, 928 Search PubMed.
  10. A. W. Frazier and J. R. Llehr, J. Agric. Food Chem., 1967, 15, 248 CAS.
  11. H. W. Lehrecke, Chem. Age, 1947, 57, 672 Search PubMed.
  12. W. L. Lindsay, A. W. Frazier and H. F. Stephenson, Soil Sci. Soc. Am. Proc., 1962, 26, 446 Search PubMed.
  13. L. S. Eshchenko, L. N. Shchegrov, V. V. Pechkovskii and A. B. Ustimovich, Zh. Neorg. Khim., 1973, 18, 909 Search PubMed (English trans., Russ. J. Inorg. Chem., 1973, 18, 478).
  14. L. G. Wesson, Science, 1932, 75, 339 CAS.
  15. R. A. Bell, D. C. Owens, M. Shapiro and J. R. Tardif, US Dept. Agric. Tech. Bull. 1584, 1981, 642 Search PubMed.
  16. F. D. Stewart, in Advances and Challenges in Insect Rearing, ed. E. G. King and N. C. Leppla, US Dept. Agric., Agric. Res. Service, 1984, p. 176 Search PubMed.
  17. B. N. Harrison, G. W. Pla, G. A. Clark and J. C. Fritz, Cereal Chem., 1976, 53, 78 Search PubMed.
  18. H. Diehl, Quantitative Analysis, Elementary Principles and Practice, Oakland Street Science Press, Ames, IA, 1970, p. 313 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.