Determination of Cl, Br, I, Mn2+, malonic acid and quercetin by perturbation of a non-equilibrium stationary state in the Bray–Liebhafsky reaction

(Note: The full text of this document is currently only available in the PDF Version )

Vladana B. Vukojević, Nataša D. Pejić, Dragomir R. Stanisavljev, Slobodan R. Anić and Ljiljana Z. Kolar-Anić


Abstract

A new method applying a non-linear chemical system under conditions far from thermodynamic equilibrium in microvolume/microconcentration quantitative analysis is described. The chemical system used as a matrix is the Bray–Liebhafsky reaction in a non-equilibrium stationary state close to a bifurcation point. The method is based on monitoring the response of this system to perturbations by Cl, Br, I, Mn2+, malonic acid and quercetin analyte solutions, which are followed potentiometrically either by an Ag+/S2– ion-sensitive or by a Pt electrode. A linear response of the potential shift versus the logarithm of the analyte concentrations is found in the following ranges: 1.3 × 10–6 mol dm–3 ≤ [Cl] ≤ 1.6 × 10–4 mol dm–3, 1.0 × 10–6 mol dm–3 ≤ [Br] ≤ 8.3 × 10–5 mol dm–3, 2.0 × 10–6 mol dm–3 ≤ [I] ≤ 1.0 × 10–4 mol dm–3, 8.4 × 10–7 mol dm–3 ≤ [Mn2+] ≤ 8.3 × 10–5 mol dm–3, 3.8 × 10–7 mol dm–3 ≤ [malonic acid] ≤ 2.1 × 10–5 mol dm–3 and 1.5 × 10–8 mol dm–3 ≤ [quercetin] ≤ 3.7 × 10–5 mol dm–3. Under the investigated conditions an improved detection limit for all halides tested is obtained. Unknown concentrations of the analytes can be determined from a standard series of calibration curves to an accuracy within ±5%. In addition, the application of potentiometric measurements in microvolume/microconcentration quantitative analysis is diversified.


References

  1. (a) G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977 Search PubMed; (b) Oscillations and Traveling Waves in Chemical Systems, ed. R. J. Field and M. Burger, Wiley, New York, 1985 Search PubMed; (c) G. Nicolis and I. Prigogine, Exploring Complexity, Freeman, San Francisco, 1989 Search PubMed; (d) P. Gray and S. Scott, Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics, Oxford University Press, Oxford, 1990 Search PubMed; (e) G. Nicolis, Introduction to Nonlinear Science, Cambridge University Press, Cambridge, 1995 Search PubMed.
  2. (a) R. Jiménez-Prieto, M. Silva and D. Pérez-Bendito, Anal. Chem., 1995, 67, 729 CrossRef CAS; (b) R. Jiménez-Prieto, M. Silva and D. Pérez-Bendito, Anal. Chim. Acta, 1996, 321, 53 CrossRef CAS and references cited therein.
  3. (a) W. C. Bray, J. Am. Chem. Soc., 1921, 43, 1262 CrossRef CAS; (b) W. C. Bray and H. A. Liebhafsky, J. Am. Chem. Soc., 1931, 53, 38 CrossRef CAS.
  4. (a) M. G. Peard and C. F. Cullis, Trans. Faraday Soc., 1951, 47, 616 RSC; (b) H. Degn, Acta. Chem. Scand., 1967, 21(4), 26; (c) I. Matsuzaki, J. H. Woodson and H. A. Liebhafsky, Bull. Chem. Soc. Jpn., 1970, 43, 3317 CAS; (d) H. A. Liebhafsky and L. S. Wu, J. Am. Chem. Soc., 1974, 96, 7180 CrossRef CAS; (e) K. R. Sharma and R. M. Noyes, J. Am. Chem. Soc., 1975, 97, 202 CrossRef CAS; (f) K. R. Sharma and R. M. Noyes, J. Am. Chem. Soc., 1976, 98, 4345 CrossRef CAS; (g) J. A. Odutola, C. A. Bohlander and R. M. Noyes, J. Phys. Chem., 1982, 86, 818 CAS; (h) S. Anić and Lj. Kolar-Anić, Ber. Bunsenges. Phys. Chem., 1986, 90, 539 Search PubMed; (i) S. Anić and Lj. Kolar-Anić, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 3413 RSC; (j) S. Anić, D. Stanisavljev, G. Krnajski Belovljev and Lj. Kolar-Anić, Ber. Bunsenges. Phys. Chem., 1989, 93, 488 Search PubMed; (k) G. Schmitz, in Spatial Inhomogeneities and Transient Behavior in Chemical Kinetics, ed. P. Gray, G. Nicolis, P. Borckmans and S. K. Scott, Manchester University Press, Manchester, 1990, p. PA16 Search PubMed; (l) S. Anić, Ž. Čupić and J. Ćirić, in Physical Chemistry '94, ed. S. Ribnikar, The Society of Physical Chemists of Serbia, Belgrade, 1994, pp. 141–142 Search PubMed; (m) D. Stanisavljev and V. Vukojević, J. Serb. Chem. Soc., 1995, 60, 1125 Search PubMed; (n) S. Anić, Lj. Kolar-Anić and E. Kőrös, React. Kinet. Catal. Lett., 1996, 57, 37 CAS; (o) S. Anić, D. Stanisavljev, Ž. Čupić, M. Radenković, V. Vukojević and Lj. Kolar-Anić, Sci. Sintering, 1998, 30, 49 Search PubMed and references cited therein.
  5. (a) H. A. Liebhafsky, W. C. McGavock, R. J. Reyes, G. M. Roe and S. L. Wu, J. Am. Chem. Soc., 1978, 100, 87 CrossRef CAS; (b) D. Edelson and R. M. Noyes, J. Phys. Chem., 1979, 83, 212 CrossRef CAS; (c) G. Schmitz, J. Chim. Phys., 1987, 84, 957 CAS; (d) Lj. Kolar-Anić and G. Schmitz, J. Chem. Soc., Faraday Trans., 1992, 88, 2343 RSC; (e) L. Treindl and R. M. Noyes, J. Phys. Chem., 1993, 97, 11354 CrossRef CAS; (f) Lj. Kolar-Anić, Dj. MiŠljenović, S. Anić and G. Nicolis, React. Kinet. Catal. Lett., 1995, 54, 35 CAS; (g) Lj. Kolar-Anić, Ž. Čupić, S. Anić and G. Schmitz, J. Chem. Soc., Faraday Trans., 1997, 93, 2147 RSC; (h) Lj. Kolar-Anić, Ž. Čupić and S. Anić, Chem. Ind., 1998, 52, 337 CAS and references cited therein.
  6. (a) J. Chopin-Dumas, C. R. Acad. Sci., Ser. C, 1987, 287, 553 Search PubMed; (b) J. Chopin-Dumas and M. N. Papel, in Synergetics: Non-Equilibrium Dynamics in Chemical Systems, ed. C. Vidal and A. Pacault, Springer, New York, 1984, pp. 69–73 Search PubMed.
  7. P. G. DrazinNonlinear Systems, Cambridge University Press, Cambridge, 1994 Search PubMed.
  8. (a) S. Anić and Lj. Kolar-Anić, Ber. Bunsenges. Phys. Chem., 1986, 90, 1084 Search PubMed; (b) S. Anić and D. Mitić, J. Serb. Chem. Soc., 1988, 53, 371 Search PubMed and references cited therein.
  9. (a) ISE Instructions for Use, Metrohm, Herisau, 1988, p. 41 Search PubMed; (b) J. Vesleý, O. J. Jensen and B. Nicolaisen, Anal. Chim. Acta, 1972, 62, 1 CrossRef; (c) R. A. Durst and B. T. Duhart, Anal. Chem., 1970, 42, 1002 CrossRef CAS.
  10. (a) S. D. Furrow and R. M. Noyes, J. Am. Chem. Soc., 1982, 104, 38 CrossRef CAS; (b) H. D. Försterling and Z. Noszticzius, J. Phys. Chem., 1989, 93, 2740 CrossRef; (c) S. Anić and D. Mitić, Glasnik na Hemicarite i Tehnolozite na Makedonija, 1989, 7, 203 Search PubMed; (d) D. Edelson, R. M. Noyes and R. J. Field, Int. J. Chem. Kinet., 1979, 11, 155 CAS; (e) A. N. Kappanna and E. R. Talaty, J. Indian Chem. Soc., 1951, 28, 675 Search PubMed; (f) K. R. Leopold and A. Haim, Int. J. Chem. Kinet., 1977, 9, 83 CAS; (g) G. Davies, J. Kirchenbaum and K. Kustin, Nature (London), 1968, 7, 146 CAS.
  11. V. Sridevi and R. Ramaswamy, in Polyphenols Communications 96, eds. J. Vercauteran, C. Cheze, M. C. Dumon and J. F. Weber, Université Bordeaux, 1996, pp. 139–140 Search PubMed.
  12. J. Kosek, P. Graae Sørensen, M. Marek and F. Hynne, J. Phys. Chem., 1994, 98, 6128 CrossRef CAS.
  13. (a) V. Vukojević, P. Graae Sørensen and F. Hynne, J. Phys. Chem., 1993, 97, 4091 CrossRef CAS; (b) J. Stemwedel, J. Ross and I. Schreiber, Adv. Chem. Phys., 1995, 89, 327 CAS.
  14. P. Graae Sørensen, F. Hynne and K. Nielsen, React. Kinet. Catal. Lett., 1990, 42, 309 CAS.
  15. T. R. Berube, R. P. Buck, E. Lindner, M. Gratzl and E. Pungor, Anal. Chem., 1989, 61, 453 CrossRef CAS.
  16. (a) J. H. Woodson and H. A. Liebhafsky, Anal. Chem., 1969, 41, 1894 CrossRef CAS; (b) R. J. Field, E. Körös and R. M. Noyes, J. Am. Chem. Soc., 1972, 94, 8649 CrossRef CAS; (c) N. Ganapathisubramanian and R. M. Noyes, J. Phys. Chem., 1982, 86, 3217 CrossRef CAS and references cited therein.
  17. (a) R. P. Buck, Anal. Chem., 1968, 40, 1432 CrossRef CAS; (b) R. P. Buck, Anal. Chem., 1968, 40, 1439 CrossRef CAS; (c) Z. Noszticzius, E. Noszticzius and Z. A. Schelly, J. Am. Chem. Soc., 1982, 104, 6194 CrossRef CAS; (d) Z. Noszticzius, E. Noszticzius and Z. A. Schelly, J. Phys, 510 Search PubMed.