Effect of diffusion on measuring oxygen consumption in oxidation reactions with polarographic membrane-covered probe

(Note: The full text of this document is currently only available in the PDF Version )

A. Naidja and P. M. Huang


Abstract

Little is known about the effect of oxygen diffusion on the accuracy of solution oxygen measurements. The effect of O2 diffusion on the measurement of dissolved O2 with a polarographic Clark-type membrane-covered electrode was studied during enzymatic and abiotic oxidation of catechol catalyzed by tyrosinase or δ-MnO2. The depletion of dissolved O2 during the oxidation of catechol was followed as a function of time in (a) air- or O2-saturated systems in a vessel completely filled with solution and sealed and (b) air- or O2-saturated systems with a headspace (the same volume of solution but in a larger vessel). The depletion of dissolved O2 was also followed after flushing the headspace with N2. The presence of the headspace had a substantial effect on the measurement of the O2 consumed by the reaction in air- or O2-saturated systems. The diffusion of O2 from the headspace to the solution resulted in an underestimation of the O2 consumed. In contrast, flushing the headspace with N2 triggered the diffusion of O2 from the solution to the headspace, resulting in a very significant overestimation of the O2 consumed by the reaction. The data indicate that O2 diffusion-induced problems in solution oxygen measurements by oxygen sensors merit close attention.


References

  1. W. W. Umbreit, R. H. Burris and J. F. Stauffer, Manometric and Biochemical Techniques, Burgess, Minneapolis, MN, 5th edn., 1972, pp. 100–110 Search PubMed.
  2. M. A. Lessler, Methods Biochem. Anal., 1982, 28, 175 Search PubMed.
  3. R. J. Feigal and B. L. Shapiro, Nature (London), 1979, 278, 276 CAS.
  4. Y. Matsuo and E. Osada, Biomed. Res., 1981, 2, 705 Search PubMed.
  5. R. R. Jenkins, R. Friedlander and H. Howald, Int. J. Sports Med., 1984, 5, 11 Search PubMed.
  6. T. E. Shumacher and J. M. Smuker, Agron. J., 1981, 73, 51.
  7. G. A. Garwood, M. M. Mortland and T. J. Pinnavaia, J. Mol. Catal., 1983, 22, 153 CrossRef CAS.
  8. H. Claus and Z. Filip, Water Sci. Technol., 1990, 22, 69 CAS.
  9. J. M. Sarkar, A. Leonowicz and J.-M. Bollag, Soil Biol. Biochem., 1989, 21, 223 CrossRef CAS.
  10. A. H. Janovitz-Klapp, F. C. Richard, P. M. Goupy and J. J. Nicolas, J. Agric. Food Chem., 1990, 38, 1437 CrossRef CAS.
  11. H. Shindo and P. M. Huang, Nature (London), 1982, 298, 363 CAS.
  12. H. Shindo and P. M. Huang, Sci. Total Environ., 1992, 117/118, 103 CrossRef.
  13. S. Pal, J.-M. Bollag and P. M. Huang, Soil Biol. Biochem., 1994, 26, 813 CrossRef CAS.
  14. A. Naidja, P. M. Huang and J.-M. Bollag, Soil Sci. Soc. Am. J., 1998, 62, 188 CAS.
  15. M. B. McBride, Clays Clay Miner., 1989, 37, 341 CAS.
  16. R. M. McKenzie, Miner. Mag., 1971, 38, 493 Search PubMed.
  17. G. S. R. Krishnamurti and P. M. Huang, Can. J. Soil Sci., 1987, 67, 533 Search PubMed.
  18. A. Naidja, P. M. Huang and J.-M. Bollag, J. Mol. Catal., 1997, 115, 305 Search PubMed.
  19. Laboratory Supplies and Instruments, Canadawide Scientific, Ottawa, Ontario, 1996, pp. 467–479 Search PubMed.
  20. K. Lerch, in Metal Ions in Biological Systems, ed. H. Sigel, Marcel Dekker, New York, 1981, vol. 13, pp. 143–186 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.