Indirect determination of trace amounts of fluoride in natural waters by ion chromatography: a comparison of on-line post-column fluorimetry and ICP-MS detectors

(Note: The full text of this document is currently only available in the PDF Version )

María Montes Bayón, Ana Rodríguez Garcia, J. Ignacio García Alonso and Alfredo Sanz-Medel


Abstract

An alternative method for the determination of trace levels of fluoride in drinking and sea-water samples is presented. It is based on the formation of the aluminium monofluoride complex in excess of Al3+ and separation of the two species formed (AlF2+ and Al3+) in a small (5 cm long, CG2) ion exchange guard column. The final determination is accomplished by both ICP-MS specific detection and post column derivatisation with fluorimetric detection. Fundamental studies on the formation kinetics of the complex, ion chromatographic separation and optimum aluminium concentration were carried out using spectrofluorimetric detection by post-column reaction of the species with 8-hydroxyquinoline-5-sulfonic acid in a micellar medium of cetyltrimethylammonium bromide. Fluorimetric detection showed good detection limits, but interferences from cations such as Mg2+ and Zn2+ required the use of the longer CS2 ion exchange column. Iron interfered in relatively large amounts but adding EDTA to the sample solution eliminated the interference. A similar separation methodology was applied using ICP-MS detection for the indirect determination of fluoride, by monitoring aluminium at mass 27. In this case, a detection limit of 0.1 ng ml–1 was obtained using 0.45 M HNO3 as eluent and no interference caused by high concentrations of iron was observed. The proposed method was applied to the determination of very low levels of fluoride in natural waters.


References

  1. H. Wang, Z. Zhang, A. Sun, D. Liu and R. Liu, Talanta, 1996, 43, 2067 CrossRef CAS.
  2. R. W. Kahama, J. J. M. Damen and J. M. ten Cate, Analyst, 1997, 122, 855 RSC.
  3. T. A. Biemer, N. Asral and A. Sippy, J. Chromatogr. A, 1997, 771, 355 CrossRef CAS.
  4. J. M. Talmage and T. A. Biemer, J. Chromatogr. A, 1987, 410, 494 CrossRef CAS.
  5. S. A. Sen, K. Kesava Rao, M. A. Frizzell and G. Rao, Field Anal. Chem. Technol., 1998, 2(1), 51 Search PubMed.
  6. P. Wang, S. F. Y. Li and H. K. Lee, J. Chromatogr. A., 1997, 765, 353 CrossRef CAS.
  7. S. A. Shamsi and N. D. Danielson, Anal. Chem., 1995, 37, 1845 CrossRef.
  8. Standard Methods for the Examination of Water and Waste Water, American Public Health Association, New York, 15th edn., 1980, p. 337 Search PubMed.
  9. F. Camuña, J. E. Sánchez-Uría and A. Sanz-Medel, Spectrochim. Acta, Part B, 1993, 48, 1115 CrossRef.
  10. A. H. Mohammed, J. T. Creed, T. M. Davidson and J. A. Caruso, Appl. Spectrosc., 1989, 43, 1127.
  11. D. A. Barnett and G. Horlick, J. Anal. At. Spectrom., 1997, 12, 497 RSC.
  12. V. Marco, F. Carrillo, C. Pérez-Conde and C. Cámara, Anal. Chim. Acta, 1993, 283, 489 CrossRef CAS.
  13. P. M. Bertsch and M. A. Anderson, Anal. Chem., 1989, 339, 535 CrossRef.
  14. P. Jones, Anal. Chim. Acta., 1992, 258, 123 CrossRef CAS.
  15. J. I. Garcia Alonso, A. López García, E. Blanco González and A. Sanz-Medel, Anal. Chim. Acta, 1989, 225, 339 CrossRef.
  16. J. I. Garcia Alonso, A. Rodriguez Garcia and A. Sanz-Medel, paper presented at Euroanalysis VII, Vienna, 1990.
  17. A. Rodriguez Garcia, Master's Degree, Faculty of Chemistry, University of Oviedo ( 1991).
  18. P. Jones, L. Ebdon and T. Williams, Analyst, 1988, 113, 641 RSC.
  19. R. Rosset, H. Conde and A. Jordy, Manuel Pratique de Chromatogra-phie en Phase Liquide, Masson, Paris, 2nd edn., 1982 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.