Increasing the sensitivity of Listeria monocytogenes assays: evaluation using ELISA and amperometric detection

(Note: The full text of this document is currently only available in the PDF Version )

Elizabeth L. Crowley, Ciara K. O’Sullivan and George G. Guilbault


Abstract

An immunosensor for the detection of Listeria monocytogenes was developed. ELISA and amperometric studies were run in parallel to develop a more sensitive and rapid assay for the bacterium. Conditions for the immunosensor were primarily characterised using ELISA. A direct sandwich assay was employed and the affinities of two polyclonal (goat and rabbit) and one monoclonal (mouse) anti-L. monocytogenes antibodies were compared using this format. Owing to low sensitivity being obtained with all antibodies, biotin–avidin amplification and an indirect sandwich assay were employed. The system was then transferred to screen-printed electrodes (SPEs), the primary antibody being immobilised by cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, and the mode of detection being amperometric. Various parameters (limit of detection, working range, incubation time, cross-reactivity) of the systems were characterised. The effect of direct incubation in milk is also discussed. The final immunosensor had a working range of 1 × 106–1 × 103 cells ml–1 and a detection limit of 9 × 102 cells ml–1. The assay took about 3.5 h to complete.


References

  1. Anon., Int. J. Food Microbiol., 1991, 14, 185.
  2. P. D. Patel and D. W. Williams, in Rapid Analysis Techniques in Food Microbiology, ed. P. D. Patel, Blackie, Glasgow, 1994, p. 63 Search PubMed.
  3. Food Microbiology, ed. M. R. Adams and M. O. Moss, Royal Society of Chemistry, Cambridge, 1995, p. 187 Search PubMed.
  4. Foodborne Pathogens: an Illustrated Text, ed. A. H. Varnam and M. G. Evans, Wolfe Publishing, London, 1991, pp. 348–351 Search PubMed.
  5. Listeria, Listeriosis and Food Safety, ed. E. T. Ryser and E. H. Marth, Marcel Dekker, New York, 1991, ch. 7 Search PubMed.
  6. P. T. Feldsine, A. H. Lienau, R. L. Forgey and R. D. Calhoon, J. AOAC Int., 1997, 80(4), 775 CAS.
  7. M. S. Curiale, W. Lepper and B. Robison, J. AOAC Int., 1994, 77(6), 1472 CAS.
  8. R. M. Twedt, A. D. Hitchins and G. A. Prentice, J. AOAC Int., 1994, 77(2), 395 CAS.
  9. P. T. Feldsine, A. H. Lienau, R. L. Forgey and R. D. Calhoon, J. AOAC Int., 1997, 80(4), 791 CAS.
  10. A. Martin and S. E. Katz, J. AOAC Int., 1993, 76(3), 632 CAS.
  11. M. Minunni, M. Mascini, R. M. Carter, M. R. Jacobs, G. J. Lubrano and G. G. Guilbault, Anal. Chim. Acta, 1996, 325(3), 169 CrossRef CAS.
  12. N. J. C. Strachan and D. I. Gray, Lett. Appl. Microbiol., 1995, 21(1), 5 CAS.
  13. H. J. Kim, H. P. Bennetto and M. A. Halablab, Biotechnol. Tech., 1995, 9(6), 389 CAS.
  14. E. Prusak-Sochaczewski, J. H. T. Luong and G. G. Guilbault, Enzyme Microb. Technol., 1990, 12, 173 CrossRef CAS.
  15. I. Rosen and J. Rishpon, J. Electroanal. Chem., 1989, 258, 27 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.