Mixed-mode capillary electrochromatographic separation of anionic analytes

(Note: The full text of this document is currently only available in the PDF Version )

Emily F. Hilder, Miroslav Macka and Paul R. Haddad


Abstract

In this work, mixed-mode capillary electrochromatography is introduced as a method for selectivity manipulation in the separation of charged analytes and is investigated for a number of analytes. This concept involves utilising a component of the eluent to permit the chromatographic and capillary electrophoresis (CE) separation mechanisms to contribute in varying proportions to the separation. This approach was first investigated using a combination of CE with reversed-phase liquid chromatography (RP-LC) for hydrophobic, charged analytes (aliphatic sulfonates), and using the concentration of organic modifier in the eluent to control the contributions of CE and RP-LC. However, the use of reversed-phase columns was found to be problematic for mobile phases with less then 50% organic modifier due to the hydrophobicity of the stationary phase causing the column bed to overheat and dry, and low electroosmotic flow (EOF) values (µ ⩽ 17.8 × 10–9 m2 V–1 s–1) caused additional restrictions. In a second case, ion-exchange stationary phases were used, with the type and concentration of a competing anion in the eluent being used to control the contributions of ion chromatography (IC) and CE to the separation. Nine common inorganic anions were separated using a silica based anion-exchange column and phosphate (pH 7.20) or sulfate (pH 8.2) as eluent with direct UV detection at 214 nm and 17 inorganic and small organic anions were separated using a nitrate eluent (pH 6.80) with indirect UV detection at 214 nm. The separation selectivity was shown to be a combination of IC and CE.


References

  1. A. L. Crego, A. Gonzalez and M. L. Marina, Crit. Rev. Anal. Chem., 1996, 26, 261 Search PubMed.
  2. M. M. Robson, M. G. Cikalo, P. Myers, M. R. Euerby and K. D. Bartle, J. Microcolumn Sep., 1997, 9, 357 CrossRef CAS.
  3. M. G. Cikalo, K. D. Bartle, M. M. Robson, P. Myers and M. R. Euerby, Analyst, 1998, 123, 87R RSC.
  4. I. S. Lurie, T. S. Conver and V. L. Ford, Anal. Chem., 1998, 70, 4563 CrossRef CAS.
  5. I. S. Lurie, R. P. Meyers and T. S. Conver, Anal. Chem., 1998, 70, 3255 CrossRef CAS.
  6. N. W. Smith and M. B. Evans, Chromatographia, 1995, 41, 197 CAS.
  7. W. Wei, G. A. Luo and C. Yan, Am. Lab., 1998, 30, C Search PubMed.
  8. W. Wei, G. A. Luo, G. Y. Hua and C. Yan, J. Chromatogr. A, 1998, 817, 65 CrossRef CAS.
  9. P. R. Haddad, J. Chromatogr. A, 1997, 770, 281 CrossRef CAS.
  10. D. M. Li, H. H. Knobel and V. T. Remcho, J. Chromatogr. B, 1997, 695, 169 CrossRef CAS.
  11. S. Kitagawa, A. Tsuji, H. Watanabe, M. Nakashima and T. Tsuda, J. Microcolumn Sep., 1997, 9, 347 CrossRef CAS.
  12. S. E. van den Bosch, J. C. Heemstra Kraak and H. Poppe, J. Chromatogr., 1996, 755, 165 CrossRef CAS.
  13. H. Rebscher and U. Pyell, Chromatographia, 1994, 38, 737.
  14. J. H. Knox and I. H. Grant, Chromatographia, 1991, 32, 317 CAS.
  15. R. M. Seifar, W. T. Kok, J. C. Kraak and H. Poppe, Chromatographia, 1997, 46, 131 CAS.
  16. G. Rozing, personal communication, 1998.
  17. P. R. Haddad and P. E. Jackson, Ion Chromatography, Principles and Applications, Elsevier, Amsterdam, 1990 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.