Investigation of problems associated with the determination of iodine in glacial acetic acid samples using flow injection analysis-inductively coupled plasma-mass spectrometry†

(Note: The full text of this document is currently only available in the PDF Version )

Kathryn L. Ackley, Jason A. Day, Karen L. Sutton and Joseph A. Caruso


Abstract

Determination of iodine in glacial acetic acid is a major concern of acetic acid manufacturers and consumers. The use of ICP-MS for iodine determinations in acetic acid is hindered by memory effects that produce an elevated background signal necessitating long rinse times between samples. In this work, different analysis methods are employed in an attempt to minimize memory and matrix effects allowing for the accurate determination of iodine in glacial acetic acid using ICP-MS. Ammonium hydroxide solutions (3.7 and 7.4 M) were better at reducing the elevated iodine signal present after the introduction of an acetic acid sample than water or 0.3 M nitric acid. Memory effects were decreased when the sample was introduced by flow injection rather than constant sample aspiration. Peak areas generated by flow injection decreased significantly with increasing ammonium hydroxide concentration in the carrier solution. Iodine determinations made with 1.7 M ammonium hydroxide as the carrier solution were higher than determinations made with 3.7 M ammonium hydroxide as the carrier solution for the same samples, however, the percentage difference between the two determinations varied widely from sample to sample. All samples were analyzed by the method of standard additions in an attempt to compensate for matrix effects. This work illustrates the importance of the carrier solution in the determination of iodine in glacial acetic acid samples.Introduction


References

  1. F. E. Police and J. F. Roth, Chem. Commun., 1968, 1578 Search PubMed.
  2. Personal communication with acetic acid producer, 1998.
  3. R. R. Rao and A. Chatt, Analyst, 1993, 118, 1247 RSC.
  4. S. P. Dolan, S. A. Sinex, S. G. Capar, A. Montaser and R. H. Clifford, Anal. Chem., 1991, 63, 2539 CrossRef CAS.
  5. B. S. Sheppard, J. A. Caruso, K. A. Wolnik and F. L. Fricke, Appl. Spectrosc., 1990, 44, 712 CAS.
  6. J. A. Nobrega, Y. Gelinas, A. Krushevska and R. M. Barnes, J. Anal. At. Spectrom., 1997, 12, 1243 RSC.
  7. T. Nakahara and T. Mori, J. Anal. At. Spectrom., 1994, 9, 159 RSC.
  8. W. E. Braselton, K. J. Stuart and J. M. Kruger, Clin. Chem., 1997, 43, 1429 CAS.
  9. F. Camuna, J. E. Sanchez-Uria and A. S. Medel, Spectrochim. Acta, 1993, 48B, 1115 CAS.
  10. W. Holak, Anal. Chem., 1987, 59, 2218 CrossRef CAS.
  11. G. Radlinger and K. G. Heumann, Anal. Chem., 1998, 79, 2221 CrossRef CAS.
  12. W. Kerl, J. S. Becker, H. J. Dietz and W. Dannecker, J. Anal. At. Spectrom., 1996, 11, 723 RSC.
  13. M. Haldimann, B. Zimmerli, C. Als and H. Gerber, Clin. Chem., 1998, 44, 819.
  14. Inductively Coupled Plasma Mass Spectrometry, ed. A. Montaser, Wiley-VCH, New York, 1998 Search PubMed.
  15. H. Vanhoe, F. V. Allemeersch, J. Versieck and R. Dams, Analyst, 1993, 118, 1015 RSC.
  16. E. H. Larsen and M. B. Ludwigsen, J. Anal. At. Spectrom., 1997, 12, 435 RSC.
  17. Y. Takaku, T. Shimamura, K. Masuda and Y. Igarashi, Anal. Sci., 1995, 11, 823 CAS.
  18. H. Baumann, Fresenius' J. Anal. Chem., 1990, 338, 809 CrossRef CAS.
  19. S. Sturup and A. Buchert, Fresenius' J. Anal. Chem., 1996, 354, 323.
  20. P. Schramel and S. Hasse, Mikrochim. Acta, 1994, 116, 205 CAS.
  21. H. Yamada, T. Kiriyama and K. Yonebayashi, Soil Sci. Plant Nutr., 1996, 42, 859 Search PubMed.
  22. P. Allain, C. D. Mauras, L. Jaunault, T. Delaporte and C. Beaugrand, Analyst, 1990, 115, 813 RSC.
  23. I. I. Stewart and J. W. Olesik, J. Anal. At. Spectrom., 1998, 13, 843 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.