Maximising microdialysis sampling by optimising the internal probe geometry

(Note: The full text of this document is currently only available in the PDF Version )

Nelson Torto, Lo Gorton, Ekaterina Mikeladze, Elisabeth Csöregi and Thomas Laurell


Abstract

An in-house microdialysis probe equipped with 3 different inner cannulae exhibiting different inner and outer radii was used to sample glucose, maltotriose, maltopentaose and maltoheptaose as model analytes in order to evaluate its performance by means of optimised internal probe geometry. The results were correlated to the inner cannula ratio (Rir), defined as the inner cannula’s inner radius divided by the inner cannula’s outer radius. Extraction fraction (EF) or relative recovery (RR) showed a dependency on Rir for all the investigated analytes at all the perfusion rates. The EF for glucose improved up to 10% for a nominal increase of 0.27 in Rir. The sensitivity of the EF of saccharides to Rir decreased with the size of molecule. Therefore the Rir represents a parameter that should be further investigated in order to maximise the performances of concentric type microdialysis probes.


References

  1. N. Torto, T. Laurell, L. Gorton and G. Marko-Varga, Anal. Chim. Acta, 1999, 379, 281 CrossRef CAS.
  2. N. Torto, T. Laurell, L. Gorton and G. Marko-Varga, Trends Anal. Chem., 1999, in the press Search PubMed.
  3. T. E. Robinson and J. B. Justice Jr, in Microdialysis in the Neurosciences, ed. J. P. Huston, Elsevier, Amsterdam, 1991 Search PubMed.
  4. J. Kehr, J. Neurosci. Methods, 1993, 48, 251 CrossRef CAS.
  5. P. M. Bungay, P. F. Morrison and R. L. Dedrick, Life Sci., 1990, 46, 105 CrossRef CAS.
  6. W. M. Renno, M. A. Mullet, F. G. Williams and A. J. Beitz, J. Neurosci. Methods, 1998, 79, 217 CrossRef CAS.
  7. G. Di Chiara, Trends Pharm. Sci., 1990, 11, 116 CrossRef CAS.
  8. N. Torto, R. Hofte, R. A. van der Hoeven, U. Tjaden, L. Gorton, G. Marko-Varga. and C. van Bruggnik, J. Mass Spectrom., 1998, 33, 334 CrossRef CAS.
  9. S. Y. Zhou, H. Zuo, J. F. Stobaugh, C. E. Lunte and S. Lunte, Anal. Chem., 1995, 67, 594 CrossRef CAS.
  10. M. I. Davies and C. E. Lunte, Chem. Soc. Rev., 1997, 26, 215 RSC.
  11. B. L. Hogan, S. M. Lunte, J. F. Stobaugh and C. E. Lunte, Anal. Chem., 1994, 66, 596 CrossRef CAS.
  12. T. J. O'Shea, M. W. Tetling-Diaz, S. M. Lunte, C. E. Lunte and M. L. Smyth, Electroanalysis, 1992, 4, 463 CAS.
  13. W. A. Kaptein, J. J. Zwaagstra, K. Venema and J. Korf, Anal. Chem., 1998, 70, 4696 CrossRef CAS.
  14. T. Laurell and T. Buttler, Anal. Methods Instr., 1995, 2, 197 Search PubMed.
  15. T. Buttler, C. Nilsson, L. Gorton, G. Marko-Varga and T. Laurell, J. Chromatogr A., 1996, 725, 41 CrossRef.
  16. N. Torto, T. Buttler, L. Gorton, G. Marko-Varga, H. Stålbrand and F. Tjerneld, Anal. Chim. Acta, 1995, 313, 15 CrossRef CAS.
  17. N. Torto, J. Bång, S. Richardson, T. Laurell, G. Nilsson, L. Gorton and G. Marko-Varga, J. Chromatogr. A., 1998, 806, 265 CrossRef CAS.
  18. J. K. Hsiao, B. A. Ball, P. F. Morrison, N. I. Mefford and P. M. Bungay, J. NeuroChem., 1990, 54, 1449 CAS.
  19. D. Jolly and P. Vezina, J. Neurosci. Methods, 1996, 68, 259 CAS.
  20. J. Schneiderheinze and B. L. Hogan, Anal. Chem., 1996, 68, 3758 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.