Determination of D-fructose in foodstuffs by an improved amperometric biosensor based on a solid binding matrix

(Note: The full text of this document is currently only available in the PDF Version )

M. Stredansky, A. Pizzariello, S. Stredanska, Stanislav Miertu[s with combining breve] and Stanislav Miertu[s with combining breve]


Abstract

An improved amperometric biosensor based on a solid binding matrix (SBM) composite transducer has been used for the determination of D-fructose in foodstuffs samples. The enzyme, D-fructose dehydrogenase (EC 1.1.99.11), was incorporated directly into a solid composite transducer containing both 2-hexadecanone as SBM and chemically modified graphite. Hexacyanoferrate(III) was used as a redox mediator and the current variation caused by the presence of D-fructose was measured amperometrically. The electrochemical properties and the characteristics of the composite fructose biosensors are described. The amperometric signals were fast, reproducible and linearly proportional to D-fructose concentrations in the range 50 × 10–6–10 × 10–3 mol l–1, with a correlation coefficient of 0.999. A set of measurements at +0.20 V versus SCE for 2 × 10–3 mol l–1D-fructose yielded a relative standard deviation for the steady-state current of 2.11%. The use of a chemically modified graphite by a mild oxidation step was shown to improve the biosensor selectivity against anionic interferents such as L-ascorbate. The biosensor proved to be stable for 6 months and the assay of D-fructose by this electrode was not influenced by the presence of sugars or other interferents commonly found in food samples. The biosensor was used for the determination of D-fructose in some food samples, and the results were consistent with those obtained with the commercially available D-fructose enzyme photometric kit.


References

  1. V. P. Frattali, in Food Carbohydrates, ed. D. R. Lineback and G. E. Inglett, AVI Press, Westport, 1982, pp. 37–48 Search PubMed.
  2. J. Wang and N. Naser, Electroanalysis, 1994, 6, 571 CAS.
  3. C. P. Meade and J. C. P. Chea, Cane Sugar Handbook, Wiley, New York, 1977 Search PubMed.
  4. G. W. Maah and G. H. Sisler, J. Am. Soc. Sugar Beet Technol., 1975, 18, 257 Search PubMed.
  5. N. H. Low and P. J. Spouns, Food Aci., 1988, 53, 558 Search PubMed.
  6. I. H. Abu-Lehia, Food Chem., 1987, 24, 233 CAS.
  7. E. Csoregi, L. Gorton and G. Marko-Varga, Anal. Chim. Acta, 1993, 273, 59 CrossRef.
  8. D. W. Lowman and G. E. Maciel, Anal. Chem., 1979, 51, 85 CrossRef CAS.
  9. L. G. Pina, M. Granda, R. Badia and M. E. Diaz-Garcia, Analyst, 1998, 123, 155 RSC.
  10. A. Amine, J. M. Kauffman, G. G. Guilbault and S. Bacha, Anal. Lett., 1993, 26, 1281 CAS.
  11. A. P. F. Turner, I. Karube and G. S. Wilson, Biosensors. Fundamentals and Applications, Oxford University Press, New York, 1987 Search PubMed.
  12. F. Schubert, D. Kirstein and F. Scheller, Anal. Lett., 1986, 19, 2155 CAS.
  13. X. Xie, S. S. Kuan and G. G. Guibault, Biosens. Bioelectron., 1991, 6, 49 CrossRef CAS.
  14. Y. Yamada, K. Aida and T. Vemera, Agric. Biol. Chem., 1966, 30, 95 CAS.
  15. M. Smolander, G. Marko-Varga and L. Gorton, Anal. Chim. Acta, 1995, 302, 233 CrossRef CAS.
  16. K. Matsumoto, H. Kamikado, H. Matsubara and Y. Osajiama, Anal. Chem., 1988, 60, 147 CrossRef CAS.
  17. R. Antiochia and G. Palleschi, Anal. Lett., 1997, 30, 683 CAS.
  18. A. Begun, E. Kobatake, T. Suzawa, Y. Ikariyama and M. Aizawa, Anal. Chim. Acta, 1993, 280, 31 CrossRef.
  19. C. A. B. Garcia, G. de Oliveira-Neto, L. T. Kubota and I. A. Grandin, J. Electroanal. Chem., 1996, 418, 147 CrossRef CAS.
  20. P. A. Paredes, J. Parellada, V. M. Fernandez, I. Katakis and E. Dominguez, Biosens. Bioelectron., 1997, 12, 1233 CrossRef CAS.
  21. J. Švorc, S. Miertuš, J. Katrlìk and M. Stredànský, Anal. Chem., 1997, 69, 2086 CrossRef CAS.
  22. S. Miertuš, J. Katrlík, A. Pizzariello, M. Stredansky, J. Švitel and J. Švorc, Biosens. Bioelectron., 1998, 13, 911 CrossRef CAS.
  23. L. Gorton, H. I. Karan, P. D. Hale, T. Inagaki, Y. Okamoto and T. A. Skotheim, Anal. Chim. Acta, 1990, 228, 23 CrossRef CAS.
  24. T. Sakano, H. Tamon, T. Katai, T. Azumi and M. Okazaki, J. Chem. Eng. Jpn., 1997, 30, 230 Search PubMed.
  25. K. Helrich, in Official methods of analysis of the A.O.A.C., A.O.A.C. Publications, VA, Arlington, USA, 1990, p. 773 Search PubMed.
  26. R. L. McCreery, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1991, vol. 17, pp. 221–347 Search PubMed.
  27. P. Chen and R. L. McCreery, Anal. Chem., 1996, 68, 3958 CrossRef CAS.
  28. M. R. Deakin, K. J. Stutts and R. M. Wightman, J. Electroanal. Chem., 1985, 182, 113 CrossRef CAS.
  29. S. Yabuki and F. Mizutani, Biosens. Bioelectron., 1995, 10, 353 CrossRef CAS.
  30. G. Nagy, H. Von Storp and G. Guilbault, Anal. Chim. Acta, 1973, 66, 443 CrossRef CAS.
  31. C. P. Andrieux, P. Audebert, P. Bacchi and B. Divisia-Blohorn, J. Electroanal. Chem., 1995, 394, 141 CrossRef CAS.
  32. S. N. Murthy and J. Sharma, Electroanalysis, 1997, 9, 726.
  33. L. Gorton, Electroanalysis, 1995, 7, 23 CAS.
  34. K. T. Kinnear and H. G. Monbouquette, Anal. Chem., 1997, 69, 1771 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.