Electrospray mass spectral study of isopolyoxomolybdates[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Daud K. Walanda, Robert C. Burns, Geoffrey A. Lawrance and Ellak I. von Nagy-Felsobuki


Abstract

Electrospray mass spectrometry (ESMS) has been performed on aqueous solutions of dilute (10–3 M) isopolyoxomolybdate systems. There is direct evidence that the evaporation process in the ESMS technique involves significant chemical effects, resulting in the detection of many new anions and cations. For ammonium polyoxomolybdate systems, negative-ion ESMS yields ions of the form [HMomO3m + 1], [MomO3m + 1]2–, [MomO3m + 2]4– as well as [Mo7O24]6–, whereas for alkali metal polyoxomolybdate systems ions of the form [MomO3m + 1A] and [MomO4mA2m – 2]2– (where A = Li+, Na+ or K+) were observed. In positive-ion mode two series of polyoxomolybdate cations, namely [MomO4mA2m + 1]+ and [MomO4mA2m + 2]2+ could be assigned. Aggregates of both the [HMomO3m + 1] and [MomO3m + 1]2– series in the ammonium polyoxomolybdate system can be classified in terms of open-chained structures of tetrahedra that are corner shared, whereas the highly charged anions [MomO3m + 2]4– and [MomO3m + 3]6– are consistent with closed-packed structures. For the alkali metal polyoxomolybdate anion and cation systems the spectra are consistent with open-chained structures of octahedral units that are edge shared, with a terminating tetrahedral unit. Linear correlations suggest that the assembly of these aggregates occurs via an addition polymerization mechanism. This model, consistent with the ESMS data, may identify the additive moieties (MoO3, MoO22+ and Mo2O8A4) required for aggregation of polyoxomolybdate species in aqueous solution.


References

  1. C. L. Hill, Chem. Rev., 1998, 98, 1 CrossRef CAS.
  2. M. T. Pope, Inorganic Chemistry Concepts 8, Heteropoly and Isopoly Oxometalates, Springer, Berlin, 1983 Search PubMed.
  3. K. F. Jahr and J. Fuchs, Angew. Chem., Int. Ed. Engl., 1966, 5, 689 CAS.
  4. K. H. Tytko and O. Glemser, Adv. Inorg. Chem. Radiochem., 1976, 19, 239 CAS.
  5. H. T. Evans, Jr., Perspect. Struct. Chem., 1971, 4, 2 Search PubMed.
  6. E. Darmois and J. Périn, C. R. Acad. Sci., 1923, 177, 762 Search PubMed.
  7. Y. Doucet and S. Bugnon, J. Chim. Phys., 1957, 54, 155 CAS.
  8. E. Richardson, J. Inorg. Nucl. Chem., 1959, 9, 267 CAS.
  9. C. Heitner-Wirguin and R. Cohen, J. Inorg. Nucl. Chem., 1964, 26, 161 CAS.
  10. D. S. Honig and K. Kustin, Inorg. Chem., 1972, 11, 65 CrossRef CAS.
  11. N. Kiba and T. Takeuchi, J. Inorg. Nucl. Chem., 1974, 36, 847 CAS.
  12. K. Y. S. Ng and E. Gulary, Polyhedron, 1984, 3, 1001 CrossRef CAS.
  13. K. H. Tytko, G. Baethe and J. J. Cruywagen, Inorg. Chem., 1985, 24, 3132 CrossRef CAS.
  14. T. Ozeki, H. Kihara and S. Ikeda, Anal. Chem., 1988, 60, 2055 CrossRef CAS.
  15. S. Himeno, H. Niiya and T. Ueda, Bull. Chem. Soc. Jpn., 1997, 70, 631 CAS.
  16. I. Lindqvist, Ark. Kemi, 1950, 2, 349 Search PubMed.
  17. G. Schwarzenbach and J. Meier, J. Inorg. Nucl. Chem., 1958, 8, 302 CAS.
  18. R. H. Busey and O. L. Keller, J. Chem. Phys., 1964, 41, 215 CrossRef CAS.
  19. Y. Sasaki and L. G. Sillén, Acta Chem. Scand., 1964, 18, 1014 CAS.
  20. E. F. C. H. Rohwer and J. J. Cruywagen, J. S. Afr. Chem. Inst., 1963, 16, 26 Search PubMed.
  21. J. Aveston, E. W. Anacker and J. S. Johnson, Inorg. Chem., 1964, 3, 735 CrossRef CAS.
  22. E. F. C. H. Rohwer and J. J. Cruywagen, J. S. Afr. Chem. Inst., 1964, 17, 145 Search PubMed.
  23. D. V. S. Jain, Indian J. Chem., 1970, 8, 945 Search PubMed.
  24. G. Wiese and D. Böse, Z. Naturforsch., Teil B, 1972, 27, 897 Search PubMed.
  25. I. Knöpnadel, H. Hartl, W.-D. Hunnius and J. Fuchs, Angew. Chem., Int. Ed. Engl., 1974, 13, 823 CrossRef.
  26. A. W. Armour, M. G. B. Drew and P. C. H. Mitchell, J. Chem. Soc. Dalton Trans., 1975, 1493 RSC.
  27. V. W. Day, M. F. Fredrich, W. G. Klemperer and W. Shum, J. Am. Chem. Soc., 1977, 99, 6146 CrossRef CAS.
  28. M. K. Cooper and J. E. Salmon, J. Chem. Soc., 1962, 2009 RSC.
  29. H. R. Allcock, F. C. Bissell and E. T. Shawl, J. Am. Chem. Soc., 1972, 94, 8603 CrossRef CAS.
  30. W. Clegg, G. M. Sheldrick, C. D. Garner and I. B. Walton, Acta Crystallogr., Sect. B, 1982, 38, 2906 CrossRef.
  31. I. Lindqvist, Ark. Kemi, 1950, 2, 325 Search PubMed.
  32. B. Krebs, S. Stiller, K. H. Tytko and J. Mehmke, Eur. J. Solid State Inorg. Chem., 1991, 28, 883 CAS.
  33. J. Marrot and J.-M. Savariault, Acta Crystallogr., Sect. C, 1995, 51, 2201 CrossRef.
  34. B. M. Gatehouse and P. Leverett, J. Chem. Soc. A, 1971, 2107 RSC.
  35. R. Colton and J. C. Traeger, Inorg. Chim. Acta, 1992, 201, 153 CrossRef CAS.
  36. J. Le Quan Tuoi and E. Muller, Rapid Commun. Mass Spectrom., 1994, 8, 692.
  37. T.-C. Lau, J. Wang, R. Guevremont and K. W. M. Siu, J. Chem. Soc., Chem. Commun., 1995, 877 RSC.
  38. M. J. Deery, O. W. Howarth and K. R. Jennings, J. Chem. Soc., Dalton Trans., 1997, 4783 RSC.
  39. S. J. Dunne, R. C. Burns and G. A. Lawrance, Aust. J. Chem., 1992, 45, 1943 CAS.
  40. S. J. Dunne, J. A. Irwin, R. C. Burns, G. A. Lawrance and D. C. Craig, J. Chem. Soc., Dalton Trans., 1993, 2717 RSC.
  41. A. L. Nolan, R. C. Burns, G. A. Lawrance and D. C. Craig, J. Chem. Soc., Dalton Trans., 1996, 2629 RSC.
  42. O. W. Howarth, P. Kelly and L. Pettersson, J. Chem. Soc., Dalton Trans., 1990, 81 RSC.
  43. M. J. Deery, T. Fernandez, O. W. Howarth and K. R. Jennings, J. Chem. Soc., Dalton Trans., 1998, 2177 RSC.
  44. G. A. Tsigdinos and C. J. Hallada, Isopoly Compounds of Molybdenum, Tungsten and Vanadium, Bulletin Cdb-14, Climax Molybdenum Company, New York, 1969 Search PubMed.
  45. D. L. Kepert, Prog. Inorg. Chem., 1962, 4, 199 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.