An EPR study of electron transfer reactions involving arenes and mercury(II) or thallium(III) salts

(Note: The full text of this document is currently only available in the PDF Version )

Alwyn G. Davies and Kai M. Ng


Abstract

EPR Spectroscopic evidence has been found for a number of new examples of the recently-recognised alternative mechanism of arene mercuriation in which collapse of the ArH˙+ Hg(TFA)2˙– radical ion pair leads to the formation of the arylmercury trifluoroacetate ArHg(TFA)˙+. The mercury is always introduced at the position where the EPR hyperfine coupling a(H) in the parent ArH˙+ is largest, and the ratio between the coupling constants of the mercury which has been introduced and the hydrogen which has been displaced, a(119Hg–TFA)/a(1H) is normally about 20.6.

The magnitude of a(119Hg–TFA) in ArHg(TFA)˙+ is interpreted in terms of the state of hybridisation of the mercury, where the amount of s character in the Ar–Hg bond, which is determined by the number and nature of the other ligands about the mercury, affects the transfer of electron spin by the spin polarisation mechanism.

When the mercury is flanked by oxygen in dioxolane or dioxane rings, the value of a(119Hg)/a(1H) is low, and it is suggested that this is caused by an increase in the coordination state of the mercury.

Addition of fluorosulfonic acid to these trifluoroacetates ArHg(TFA)˙+ often gives the corresponding fluorosulfonates ArHgOSO2F˙+, in which the ratio a(119HgOSO2F[hair space])/a(119HgTFA) is about 1.15. This increase in a(119Hg) is thought to result from rehybridisation of the mercury induced by the more electronegative fluorosulfonate ligand, putting more s character into the Ar–Hg bond.

Oxidation of a number of arenes with thallium(III) tris(trifluoroacetate) has provided one further example of the formation of aryl trifluoroacetate radical cations Ar(TFA)˙+, and it is suggested that these are formed by the reductive elimination reaction of thalliated intermediates, ArTl(TFA)2.


References

  1. W. Lau, J. C. Huffman and J. K. Kochi, J. Am. Chem. Soc., 1982, 104, 5515 CrossRef CAS.
  2. R. Taylor, Electrophilic Aromatic Substitution, Wiley, Chichester, 1990 Search PubMed.
  3. W. Lau and J. K. Kochi, J. Org. Chem., 1986, 51, 1801 CrossRef CAS.
  4. A. G. Davies, Chem. Soc. Rev., 1993, 299 RSC.
  5. J. L. Courtneidge, A. G. Davies, P. S. Gregory, D. C. McGuchan and S. N. Yazdi, J. Chem. Soc., Chem. Commun., 1987, 1192 RSC.
  6. J. L. Courtneidge, A. G. Davies, D. C. McGuchan and S. N. Yazdi, J. Organomet. Chem., 1988, 341, 63 CrossRef CAS.
  7. A. G. Davies, C. J. Shields, J. C. Evans and C. C. Rowlands, Can. J. Chem., 1989, 67, 1748 CAS.
  8. I. H. Elson and J. K. Kochi, J. Am. Chem. Soc., 1973, 95, 5060 CrossRef CAS.
  9. L. Eberson, M. P. Hartshorn, O. Persson and J. O. Svensson, J. Chem. Soc., Perkin Trans. 2, 1995, 1253 RSC.
  10. P. D. Sullivan, E. M. Menger, A. H. Reddoch and D. H. Paskovich, J. Phys. Chem., 1978, 82, 1158 CrossRef CAS.
  11. J. Eloranta and S. Kasa, Acta Chem. Scand., Ser. A, 1985, 399, 63.
  12. A. G. Davies and D. C. McGuchan, Organometallics, 1991, 10, 329 CrossRef CAS.
  13. X. H. Chen and P. D. Sullivan, J. Magn. Reson., 1989, 83, 484 CAS.
  14. L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1995, 1735 RSC.
  15. D. V. Avila and A. G. Davies, J. Chem. Soc., Perkin Trans. 2, 1991, 1111 RSC.
  16. G. B. Deacon and D. Tunaley, J. Organomet. Chem., 1978, 156, 403 CrossRef CAS.
  17. D. V. Avila, A. G. Davies, M. L. Girbal and K. M. Ng, J. Chem. Soc., Perkin Trans. 2, 1990, 1693 RSC.
  18. J. Fleischhauer, S. Ma, W. Schleker, K. Gersonde, H. Twilfer and F. Dallacker, Z. Naturforsch., Teil A, 1982, 37, 680.
  19. P. D. Sullivan and N. A. Brette, J. Phys. Chem., 1975, 79, 474 CrossRef CAS.
  20. N. A. Malysheva, A. I. Prokof'ev, N. N. Bubnov, S. P. Solodovnikov, T. I. Prokof'ev, V. B. Vol'eva, V. V. Ershov and M. I. Kabachnik, Izvest. Akad. Nauk SSSR, Ser. Khim., 1988, 1040 Search PubMed.
  21. J. L. Courtneidge, A. G. Davies, E. Lusztyk and J. Lusztyk, J. Chem. Soc., Perkin Trans. 2, 1984, 155 RSC.
  22. J. L. Courtneidge, A. G. Davies, S. M. Tollerfield, J. Rideout and M. C. R. Symons, J. Chem. Soc., Chem. Commun., 1985, 1092 RSC.
  23. C. J. Cooksey, J. L. Courtneidge, A. G. Davies, J. C. Evans, P. S. Gregory and C. C. Rowlands, J. Chem. Soc., Perkin Trans. 2, 1988, 807 RSC.
  24. H. Brunner, K. H. Hausser, M. Rawtischer and H. A. Staab, Tetrahedron Lett., 1966, 2775 CrossRef CAS.
  25. D. H. Whiffen, Mol. Phys., 1963, 6, 223 CAS.
  26. D. V. Avila, A. G. Davies, R. Lapouyade and K. M. NgJ. Chem. Soc., Perkin Trans. 2, 1998, following paper Search PubMed.
  27. F. Gerson, High Resolution ESR Spectroscopy, Wiley-Verlag, Weinheim, 1970 Search PubMed.
  28. R. Diercks and K. P. C. Vollhardt, J. Am. Chem. Soc., 1986, 108, 3150 CrossRef CAS.
  29. B. W. Fullam and M. C. R. Symons, J. Chem. Soc., Dalton Trans., 1974, 1086 RSC.
  30. J. L. Wardell, in Comprehensive Organometallic Chemistry, ed. E. W. Abell, F. G. A. Stone and G. Wilkinson, Pergamon, Oxford, 1982 Search PubMed.
  31. A. G. Davies and J. L. Wardell, in Comprehensive Organometallic Chemistry, ed. E. W. Abell, F. G. A. Stone and G. Wilkinson, Pergamon, Oxford, 1995 Search PubMed.
  32. L. Eberson, F. Radner and M. Lindgren, Acta Chem. Scand., 1993, 47, 835 CAS.