EPR studies on the selectivity of hydroxyl radical attack on amino acids and peptides

(Note: The full text of this document is currently only available in the PDF Version )

Clare L. Hawkins and Michael J. Davies


Abstract

Direct rapid-flow EPR experiments together with computer simulations have been used to examine the selectivity of hydroxyl radical (generated using a Ti3+/H2O2 redox couple) attack on a number of aliphatic amino acids, amino acid derivatives and small peptides. For glycine, glycine derivatives and glycine peptides attack at the α-carbon position predominates under all conditions; in peptides attack at the C-terminal site is preferred over mid-chain sites, which in turn are favoured over the N-terminal position. This behaviour is rationalised in terms of the destabilising effect of the protonated α-amino group, which can exert both short- and long-range effects. With alanine peptides hydrogen atom abstraction at the side-chain methyl group predominates with free amino acid; significant levels of attack at the α-carbon position are however observed with peptides. In contrast, with valine and leucine peptides side-chain attack always predominates irrespective of whether the backbone amino group is derivatized or not; the ratio of side-chain species is also only marginally affected. The preference for attack at tertiary side-chain sites over primary side-chain methyl groups in such peptides is small. These results support the hypothesis that the selective fragmentation of large proteins as a result of exposure to hydroxyl radicals in the presence of oxygen may occur primarily as a result of attack at the α-carbon position of surface-exposed glycine and alanine residues.


References

  1. W. M. Garrison, Chem. Rev., 1987, 87, 381 CrossRef CAS.
  2. E. R. Stadtman, Annu. Rev. Biochem., 1993, 62, 797 CrossRef CAS.
  3. M. J. Davies and R. T. Dean, Radical-mediated protein oxidation: from chemistry to medicine, Oxford University Press, Oxford, 1997, pp. 1–443 Search PubMed.
  4. R. T. Dean, S. Fu, R. Stocker and M. J. Davies, Biochem. J., 1997, 324, 1 CAS.
  5. H. Schuessler and A. Herget, Int. J. Radiat. Biol., 1980, 37, 71 CAS.
  6. H. Schuessler and K. Schilling, Int. J. Radiat. Biol., 1984, 45, 267 CAS.
  7. M. Puchala and H. Schuessler, Int. J. Radiat. Biol., 1993, 64, 149 CAS.
  8. M. Puchala and H. Schuessler, Int. J. Pept. Protein Res., 1995, 46, 326 CAS.
  9. R. T. Dean, S. P. Wolff and M. A. McElligott, Free Radical Res. Commun., 1989, 7, 97 Search PubMed.
  10. K. Uchida, Y. Kato and S. Kawakishi, Biochem. Biophys. Res. Commun., 1990, 169, 265 CAS.
  11. Y. Kato, K. Uchida and S. Kawakishi, J. Biol. Chem., 1992, 267, 23 646 CAS.
  12. C. J. Easton, in Advances in Detailed Reaction Mechanisms, J. M. Coxon, ed., JAI Press, Greenwich, CT, 1991, vol. 1, pp. 83–126 Search PubMed.
  13. C. J. Easton, Chem. Rev., 1997, 97, 53 CrossRef CAS.
  14. C. J. Easton and M. P. Hay, J. Chem. Soc., Chem. Commun., 1986, 55 RSC.
  15. V. A. Burgess, C. J. Easton and M. P. Hay, J. Am. Chem. Soc., 1989, 111, 1047 CrossRef CAS.
  16. C. Wyss, R. Batra, C. Lehmann, S. Sauer and B. Giese, Angew. Chem., Int. Ed. Engl., 1996, 35, 2529 CAS.
  17. D. Elad and J. Sperling, J. Chem. Soc. C, 1969, 1579 RSC.
  18. M. Schwarzberg, J. Sperling and D. Elad, J. Am. Chem. Soc., 1973, 95, 6418 CrossRef.
  19. P. Wheelan, W. M. Kirsch and T. H. Koch, J. Org. Chem., 1989, 54, 4360 CrossRef.
  20. C. J. Easton, M. P. Hay and S. G. Love, J. Chem. Soc., Perkin Trans. 1, 1988, 265 RSC.
  21. W. A. Armstrong and W. G. Humphreys, Can. J. Chem., 1967, 45, 2589 CAS.
  22. H. Taniguchi, K. Fuchi, S. Ohnishi, H. Hatano, H. Hasegawa and T. Maruyama, J. Phys. Chem., 1968, 72, 1926 CrossRef CAS.
  23. H. Paul and H. Fischer, Ber. Bunsenges. Phys. Chem., 1969, 73, 972 Search PubMed.
  24. P. Neta, M. G. Simic and E. Hayon, J. Phys. Chem., 1970, 74, 1214 CrossRef CAS.
  25. P. Smith, W. M. Fox, D. J. McGinty and R. D. Stevens, Can. J. Chem., 1970, 48, 480 CAS.
  26. H. Taniguchi, H. Hatano, H. Hasegawa and T. Maruyama, J. Phys. Chem., 1970, 74, 3063 CrossRef CAS.
  27. P. Neta and R. W. Fessenden, J. Phys. Chem., 1971, 75, 738 CrossRef.
  28. H. Paul and H. Fischer, Helv. Chim. Acta, 1971, 54, 485 CrossRef CAS.
  29. H. Taniguchi, H. Hasumi and H. Hatano, Bull. Chem. Soc. Jpn., 1972, 45, 3380 CAS.
  30. R. Livingston, D. G. Doherty and H. Zeldes, J. Am. Chem. Soc., 97, 3198 Search PubMed.
  31. V. A. Burgess and C. J. Easton, Tetrahedron Lett., 1987, 28, 2747 CrossRef CAS.
  32. G. R. Buettner, Free Radical Biol. Med., 1987, 3, 259 CrossRef CAS.
  33. G. V. Buxton, C. L. Greeenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513 CAS.
  34. B. C. Gilbert, R. O. C. Norman and R. C. Sealy, J. Chem. Soc., Perkin Trans. 2, 1974, 824 RSC.
  35. B. C. Gilbert, R. O. C. Norman, P. S. Williams and J. N. Winter, J. Chem. Soc., Perkin Trans. 2, 1982, 1439 RSC.
  36. C. J. Easton, J. B. Kelly and C. M. Ward, J. Chem. Res., 1997, 470 RSC.
  37. C. J. Easton and M. P. Hay, J. Chem. Soc., Chem. Commun., 1985, 425 RSC.
  38. S. Fu, L. A. Hick, M. M. Sheil and R. T. Dean, Free Radical Biol. Med., 1995, 19, 281 CrossRef CAS.
  39. S. Fu and R. T. Dean, Biochem. J., 1997, 324, 41 CAS.
  40. S. Fu, R. T. Dean, M. Southan and R. Truscott, J. Biol. Chem., 1998, in the press Search PubMed.
  41. S. Fu, M.-X. Fu, J. W. Baynes, S. R. Thorpe and R. T. Dean, Biochem. J., 1998, 330, 233 CAS.
  42. S. Fu, M. J. Davies, R. Stocker and R. T. Dean, Biochem. J., 1998, 333, 519 CAS.
  43. D. R. Duling, J. Magn. Res., 1994, 104B, 105.
Click here to see how this site uses Cookies. View our privacy policy here.