Carbodications. 5.1 Ring opening of the cyclopropanecarbonyl cation in superacid

(Note: The full text of this document is currently only available in the PDF Version )

Dan Fǎrcasiu, Glen Miller, Ursula L. Bologa, Alan R. Katritzky and Barry K. Carpenter


Abstract

The cyclopropanecarbonyl cation (11) was prepared from cyclopropanecarbonyl chloride in 1∶1 HF–SbF5, 1∶1 FSO3H–SbF5, and 4∶1 FSO3H–SbF5. Ring opening occurred in the strongest superacids 1∶1 HF–SbF5 and (much slower) 1∶1 FSO3H–SbF5, but not in 4∶1 FSO3H–SbF5. The crotyl (2) and methacryloyl (14) cations were formed in 1∶1 FSO3H–SbF5, but very little or no 14 accompanied 2 in 1∶1 HF–SbF5. Thus, 2 is formed by acid catalysis only, whereas formation of 14 involves base catalysis supplementing the acid catalysis in superacids. Dehydrochlorination of the 4-chlorobutanoyl cation in HF–SbF5 and H/D exchange at C3 of 2 (involving attack by the acid at C3 of 3-butenoyl cation) in 1∶1 DF–SbF5, both reported before, cannot involve intramolecular assistance with the formation of ring-hydronated 11 as intermediate. Instead, a 1,4 acyl alkyl dication in a tight ion pair is indicated by the results. Reaction in 1∶1 FSO3H–SbF5 under CO pressure followed by methanol quenching gave the methyl esters of glutaric (major) and methylsuccinic acid (minor); at least the latter should be formed by an SN2-like attack by CO. The reaction of 11 in deuterated superacids 1∶1 DF–SbF5 and 1∶1 FSO3D–SbF5 was much slower than the reaction in the corresponding protio-acids. At the same time, H/D exchange in the ring of unreacted 11 was observed. The extent of exchange could be assessed for the reaction in 1∶1 FSO3H–SbF5, where conversion to 2 was small. The deuteration of the ring in this medium is similar in rate to the ring cleavage. Together with the observed rate reduction in the deuterated acids, this result suggests that H/D exchange in 11 and its ring opening do not occur on the same reaction pathway.


References

  1. For the previous paper in the series, see: D. Fǎrcaşiu and U. L. Bologa, J. Org. Chem., 1996, 61, 8860 Search PubMed.
  2. Current address: Degussa-Romania, SRL, Str. Polona 35, RO-70181, Bucharest.
  3. (a) D. Fǎrcaşiu and G. Miller, J. Org. Chem., 1989, 54, 5423 CrossRef CAS; (b) D. Fǎrcaşiu, G. Miller and S. Sharma, J. Phys. Org. Chem., 1990, 3, 639 CAS; (c) D. Fǎrcaşiu and A. Ghenciu, Progr. Phys. Org. Chem., 1996, 29, 129 Search PubMed.
  4. Vast acidity differences existing among media more acidic than 100% sulfuric acid require making a distinction between weak, strong, and very strong superacids: D. Fǎrcaşiu, G. Marino, G. Miller and R. V. Kastrup, J. Am. Chem. Soc., 1989, 111, 7210 Search PubMed.
  5. For the nomenclature of H species, see: J. F. Bunnett and R. A. Y. Jones, Pure Appl. Chem., 1988, 60, 115 Search PubMed.
  6. D. Fǎrcaşiu, A. Ghenciu and J. Q. Li, J. Catal., 1996, 158, 116 CrossRef CAS.
  7. D. Fǎrcaşiu, A. Ghenciu and G. Miller, J. Catal., 1992, 134, 118 CrossRef CAS.
  8. D. Fǎrcaşiu, R. Rich and L. D. Rose, J. Org. Chem., 1989, 54, 4582 CrossRef CAS.
  9. G. H. Jefferry and A. I. Vogel, J. Chem. Soc., 1948, 658 RSC.
  10. G. A. Olah, R. J. Spear and J. M. Denis, J. Am. Chem. Soc., 1974, 96, 5855 CrossRef CAS.
  11. Formation of 11 in superacid was reported before: G. A. Olah and G. Liang, J. Org. Chem., 1974, 40, 2108 Search PubMed Two sets of 13C chemical shifts were given: δ 26.5, CH2; 19.6, CH; 153.0, CO (in the text), and δ 20.6, CH2; 19.6, CH (in a table). Either of them should correspond to some acyl cation other than 11.
  12. (a) See, for example: M. A. Battiste and J. M. Coxon, in The Chemistry of the Cyclopropyl Group, ed. Z. Rappoport, Wiley, New York, 1987 Search PubMed; (b) J. M. Coxon, P. J. Steel, B. L. Whittington and M. A. Battiste, J. Org. Chem., 1989, 54, 1383 CrossRef CAS and references therein.
  13. N. C. Deno, W. E. Billups, D. La Vietes, P. C. Scholl and S. Schneider, J. Am. Chem. Soc., 1970, 92, 3700 CrossRef CAS.
  14. (a) J. M. Oelderik, cited in: D. M. Brouwer and E. L. Mackor, Proc. Chem. Soc. 1964147 Search PubMed; (b) J. M. Oelderik, E. L. Mackor, J. C. Platteeuw and A. van der Wiel, Brit. Pat. 981311 (appl. 1962) Search PubMed; see also US 3201494 ( 1965); (c) H. Hogeveen and A. F. Bickel, J. Chem. Soc., Chem. Commun., 1967, 635 RSC; (d) D. M. Brouwer and H. Hogeveen, Progr. Phys. Org. Chem., 1972, 9, 179 Search PubMed; (e) The nonoxidizing nature of dilute (higher than 10∶1) HF–SbF5 was assessed in refs. 14(a)–(c) in reactions of alkanes at room temperature. An acid as dilute as 30∶1 HF–SbF5 exhibited, however, one-electron oxidizing ability toward benzene at 0 °C: D. Fǎrcaşiu, S. L. Fisk, M. T. Melchior and K. D. Rose, J. Org. Chem., 1982, 47, 453 Search PubMed.
  15. D. Fǎrcaşiu, M. Siskin and R. P. Rhodes, J. Am. Chem. Soc., 1979, 101, 7671 CrossRef CAS.
  16. (a) G. A. Olah and J. L. Lukas, J. Am. Chem. Soc., 1967, 89, 2227 CrossRef CAS; (b) G. A. Olah and J. L. Lukas, J. Am. Chem. Soc., 1967, 89, 4739 CrossRef CAS; (c) G. A. Olah, G. K. Surya-Prakash and J. Sommer, Superacids, Wiley, New York, 1985 Search PubMed.
  17. (a) J. Lukas, quoted in ref. 14(d); (b) T. H. Ledford, J. Org. Chem., 1979, 44, 23 CrossRef CAS.
  18. C. D. Poulter and S. Winstein, J. Am. Chem. Soc., 1969, 91, 3649 CrossRef CAS.
  19. (a) D. M. Brouwer, Recl. Trav. Chim. Pays-Bas, 1969, 88, 530 CAS; (b) D. M. Brouwer and J. A. van Doorn, Recl. Trav. Chim. Pays-Bas, 1970, 89, 553 CAS; (c) D. M. Brouwer and J. A. van Doorn, Recl. Trav. Chim. Pays-Bas, 1973, 92, 895; (d) H. Hogeveen, Recl. Trav. Chim. Pays-Bas, 1968, 87, 1295 CAS.
  20. G. A. Olah, J. M. Denis and P. W. Westerman, J. Org. Chem., 1974, 39, 1206 CrossRef CAS.
  21. For details on the reaction of 1, see: G. P. Miller, PhD Thesis, Clarkson University, 1991, pp. 82–143 Search PubMed.
  22. (a) D. Fǎrcaşiu and R. H. Schlosberg, J. Org. Chem., 1982, 47, 151 CrossRef CAS; (b) Review: H. Hogeveen, Adv. Phys. Org. Chem., 1973, 10, 29 Search PubMed.
  23. The calculation for the 9.219 min sample gave 46.5 d0, 24.5%d1, 16.5 d2, 12.0%d3, and 93 exchange events for 100 molecules. The value for d3 seems too high.
  24. See, for example (a) D. Fǎrcaşiu and P. v. R. Schleyer, Tetrahedron Lett., 1973, 3835 CrossRef CAS and references therein; (b) J. B. Lambert, E. C. Chelius, R. H. Bible, Jr. and E. Hajdu, J. Am. Chem. Soc., 1991, 113, 1331 CrossRef CAS and references therein.
  25. W. Koch, B. Liu and P. v. R. Schleyer, J. Am. Chem. Soc., 1989, 111, 3479 CrossRef CAS.
  26. (a) D. Fǎrcaşiu and D. Hâncu, J. Phys. Chem., 1997, 101, 8695 Search PubMed; (b) D. Fǎrcaşiu, D. Hâncu and J. F. Haw, J. Phys. Chem., 1998, 102, 2493 Search PubMed; (c) D. Fǎrcaşiu and P. Lukinskas, J. Phys. Chem., submitted Search PubMed.
  27. (a) D. Fǎrcaşiu, G. Marino and C. S. Hsu, J. Org. Chem., 1994, 59, 163 CrossRef CAS; (b) D. Fǎrcaşiu, J. Chem. Soc., Chem. Commun., 1994, 2611 RSC.
  28. (a) A. R. Katritzky and A. M. El-Mowafy, J. Org. Chem., 1982, 47, 3506 CrossRef CAS; (b) A. R. Katritzky and A. M. El-Mowafy, J. Org. Chem., 1982, 47, 3511 CrossRef CAS.
  29. A. R. Katritzky, Z. Dega-Szafran, M. L. Lopez-Rodriguez and R. W. King, J. Am. Chem. Soc., 1984, 106, 5577 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.