Model studies toward trivalent cation binding by appropriately functionalized calix[4]arenes

(Note: The full text of this document is currently only available in the PDF Version )

Marcel H. B. Grote Gansey, Willem Verboom, Frank C. J. M. van Veggel, Victor Vetrogon, Françoise Arnaud-Neu, Marie-José Schwing-Weill and David N. Reinhoudt


Abstract

Molecular modeling and molecular dynamics of a series of calix[4]arene tetracarboxylic acids and tricarboxylic acid monoamides revealed that in an aqueous environment the phenolic oxygen atoms do not participate in the complexation of Ac3+. This observation led to the design and synthesis of new calix[4]arene based ionophores, containing multiple glycine units, having an increased number of potential donor sites. Potentiometric titrations in methanol with La3+ as a non-radioactive model for Ac3+ indicated that, although the level of complexation is high for all ligands, a new calix[4]arene derivative 5 is superior at pH < 4.


References

  1. M. W. Geerlings, F. M. Kaspersen, C. Apostolidis and R. van der Hout, Nucl. Med. Commun., 1993, 14, 121 CAS.
  2. F. M. Kaspersen, E. Bos, A. V. Doornmalen, M. W. Geerlings, C. Apostolidis and R. Molinet, Nucl. Med. Commun., 1995, 16, 468 CAS.
  3. Ac3+ can be extracted from an aqueous phase into an organic phase by calix[4]arenes. See: X. Chen, M. Ji, D. R. Fisher and C. M. Wai, Chem. Commun., 1998, 377 Search PubMed.
  4. For some reviews, see: (a) D. Parker, Chem. Soc. Rev., 1990, 19, 271 RSC; (b) D. M. Goldenberg, Immunobiol. Proteins Pep. 6, 1991, 107 Search PubMed; (c) L. Yuanfang and W. Chuanchu, Pure Appl. Chem., 1991, 63, 427 CrossRef CAS.
  5. Y. Marcus, Ion Properties, Marcel Dekker, Inc., New York, 1997 Search PubMed.
  6. (a) D. M. Rudkevich, W. Verboom, E. B. van der Tol, C. van Staveren, F. M. Kaspersen, J. W. Verhoeven and D. N. Reinhoudt, J. Chem. Soc., Perkin Trans. 2, 1995, 131 RSC; (b) F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. van der Tol and J. W. Verhoeven, J. Am. Chem. Soc., 1995, 117, 9408 CrossRef CAS.
  7. F. C. J. M. van Veggel and D. N. Reinhoudt, Recl. Trav. Chim. Pays-Bas, 1995, 114, 387 CAS.
  8. For some examples, see: (a) R. Seangprasertkij, Z. Asfari, F. Arnaud and J. Vicens, J. Org. Chem., 1994, 59, 1741 CrossRef CAS; (b) J. F. Malone, D. J. Marrs, M. A. McKervey, P. O'Hagan, N. Thompson, A. Walker, F. Arnaud-Neu, O. Mauprivez, M.-J. Schwing-Weill, J.-F. Dozol, H. Rouquette and N. Simon, J. Chem. Soc., Chem. Commun., 1995, 2151 RSC; (c) F. Arnaud-Neu, V. Böhmer, J.-F. Dozol, C. Grüttner, R. A. Jakobi, D. Kraft, O. Mauprivez, H. Rouquette, M.-J. Schwing-Weill, N. Simon and W. Vogt, J. Chem. Soc., Perkin Trans. 2, 1996, 1175 RSC; (d) L. Dasaradhi, P. C. Stark, V. J. Huber, P. H. Smith, G. D. Jarvinen and A. S. Gopalan, J. Chem. Soc., Perkin Trans. 2, 1997, 1187 RSC.
  9. N. Sabbatini, M. Guardigli, A. Mecati, V. Balzani, R. Ungaro, E. Ghidini, A. Casnati and A. Pochini, J. Chem. Soc., Chem. Commun., 1990, 878 RSC.
  10. F. J. Steemers, H. G. Meuris, W. Verboom, D. N. Reinhoudt, E. B. van der Tol and J. W. Verhoeven, J. Org. Chem., 1997, 62, 4229 CrossRef CAS.
  11. R. Fossheim and S. G. Dahl, Acta Chem. Scand., 1990, 698 CAS.
  12. S. T. Frey, C. A. Chang, J. F. Carvalho, A. Varadarajan, L. M. Schultze, K. L. Pounds and W. DeW Horrocks, Jr., Inorg. Chem., 1994, 33, 2882 CrossRef CAS.
  13. (a) F. C. J. M. van Veggel, J. Phys. Chem., 1997, 101, 2755 Search PubMed; (b) F. C. J. M. van Veggel, M. P. Oude Wolbers and D. N. Reinhoudt, J. Phys. Chem., 1998, 102, 3060 Search PubMed.
  14. (a) P. Guilbaud, A. Varnek and G. Wipff, J. Am. Chem. Soc., 1993, 115, 8298 CrossRef CAS; (b) A. Varnek and G. Wipff, J. Phys. Chem., 1993, 97, 10 840 CrossRef CAS.
  15. We have followed a methodology used to derive a set of Lennard–Jones parameters for the alkali and alkaline earth metal ions: J. Åqvist, J. Phys. Chem., 1990, 94, 8021 Search PubMed; See: F. C. J. M. van Veggel and D. N. Reinhoudt, New, accurate Lennard–Jones parameters for trivalent lanthanide ions tested on 18-crown-6, accepted for publication in Chem. Eur. J CrossRef.
  16. For a derivation of ΔGBorn see: P. W. Atkins, Physical Chemistry, 5th edn., Oxford University Press, Oxford, 1994 Search PubMed.
  17. It is assumed that the ΔGcav can be neglected because it is much smaller than the error of the calculations. See: F. M. Floris, M. Selmi, A. Tani and J. Tomasi, J. Chem. Phys., 1997, 107, 6353 Search PubMed.
  18. W. L. Jorgensen, J. Chem. Phys., 1983, 79, 926 CrossRef CAS.
  19. (a) D. T. Richens, The Chemistry of Aqua Ions, John Wiley & Sons, Chichester, 1997 Search PubMed; (b) B. Keller, J. Glinski, K. Orzechowski and J. Legendziewicz, New J. Chem., 1997, 21, 329 Search PubMed; (c) C. Cossy, L. Helm, D. H. Powell and A. E. Merbach, New J. Chem., 1995, 19, 27 Search PubMed; (d) C. Cossy, A. C. Barnes, J. E. Enderby and A. E. Merbach, J. Chem. Phys., 1989, 90, 3254 CrossRef CAS; (e) F. H. David and B. Fourest, New J. Chem., 1997, 21, 167 Search PubMed; (f) R. Beudert, H. Bertagnolli and M. Zeller, J. Chem. Phys., 1997, 106, 8841 CrossRef CAS.
  20. J. Burgess, Chem. Soc. Rev., 1996, 85 RSC.
  21. De-tert-butylated calix[4]arene tetraester 9b may be used as starting material in the synthesis of water-soluble derivatives by upper rim functionalization. See: M. H. B. Grote Gansey, F. J. Steemers, W. Verboom and D. N. Reinhoudt, Synthesis, 1997, 643 Search PubMed.
  22. (a) A. Arduini, A. Pochini, S. Reverbi and R. Ungaro, J. Chem. Soc., Chem. Commun., 1984, 981 RSC; (b) R. Ungaro and A. Pochini, J. Inclusion Phenom., 1984, 2, 199 CrossRef CAS.
  23. A. Casnati, Y. Ting, D. Berti, M. Fabbi, A. Pochini, R. Ungaro, D. Sciotto and G. G. Lombardo, Tetrahedron, 1993, 49, 9815 CrossRef CAS.
  24. F. Arnaud-Neu, S. Cremin, S. Harris, M. A. McKervey, M.-J. Schwing-Weill, P. Schwinté and A. Walker, J. Chem. Soc., Dalton Trans., 1997, 329 RSC.
  25. We do not expect significant differences in the MD simulations to be caused by the presence of the tBu-groups. See: W. P. van Hoorn, W. J. Briels, J. P. M. van Duynhoven, F. C. J. M. van Veggel and D. N. Reinhoudt, J. Org. Chem., 1998, 63, 1299 Search PubMed.
  26. (a) C. D. Gutsche, M. Iqbal and D. Stewart, J. Org. Chem., 1986, 51, 742 CrossRef CAS; (b) C. D. Gutsche and J. A. Levine, J. Am. Chem. Soc., 1982, 104, 2652 CrossRef CAS.
  27. (a) B. R. Brooks, R. E. Bruccoleri, B. D. Olafsen, D. J. States, S. Swaminathan and M. Karplus, J. Comput. Chem., 1983, 4, 187 CrossRef CAS; (b) F. A. Momany, V. J. Klimkowski and L. Schäfer, J. Comput. Chem., 1990, 11, 654 CrossRef CAS; (c) F. A. Momany, R. Rone, H. Kunz, R. F. Frey, S. Q. Newton and L. Schäfer, J. Mol. Struct., 1993, 286, 1 CrossRef.
  28. H. J. C. Berendsen, J. P. M. Postma, A. Dinola, W. F. van Gunsteren and J. R. Haak, J. Chem. Phys., 1984, 81, 3684 CrossRef CAS.
  29. (a) W. L. Jorgensen, BOSS version 3.5, Yale University, New Haven, 1994 Search PubMed; (b) W. L. Jorgensen, J. Phys. Chem., 1983, 87, 5304 CrossRef CAS; (c) W. L. Jorgensen, Acc. Chem. Res., 1989, 22, 184 CrossRef CAS; (d) E. M. Duffy and W. L. Jorgensen, J. Am. Chem. Soc., 1994, 116, 6337 CrossRef; (e) G. Kaminski, E. M. Duffy, T. Matsui and W. L. Jorgensen, J. Phys. Chem., 1994, 98, 13 077 CrossRef CAS.
  30. J. Massaux and G. Duyckerts, Anal. Chim. Acta, 1974, 73, 416 CrossRef CAS.
  31. V. I. Vetrogon, N. G. Lukyanenko, M.-J. Schwing-Weill and F. Arnaud-Neu, Talanta, 1994, 41, 2105 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.