Triazene drug metabolites. Part 16.1 Kinetics and mechanism of the hydrolysis of aminoacyltriazenes

(Note: The full text of this document is currently only available in the PDF Version )

Emília Carvalho, Jim Iley, Maria de Jesus Perry and Eduarda Rosa


Abstract

Kinetic studies of the hydrolysis of 3-aminoacyl-1-aryl-3-methyltriazenes to the corresponding 1-aryl-3-methyltriazenes were carried out in pH 3–12 aqueous buffers at 25 °C. Pseudo-first-order rate constants were found to depend both on pH and buffer concentration. pH–Rate profiles for the compounds derived from α-amino acids, 3a–e, exhibit sigmoidal curves consistent with an HO-catalysed reaction proceeding via both protonated and unprotonated forms of the structure. For the β-amino acid derivative, 3f, the difference in reactivity between these two substrate forms is much less pronounced. For the N-acetylated derivative, 3g, only the unprotonated form is kinetically significant. Solvent deuterium isotope effects for the reaction of HO with the protonated substrate are ca. 0.8 and for the unprotonated substrate ca. 1.0, suggesting nucleophilic catalysis by HO for both forms. Both protonated and unprotonated forms of the substrate are subject to buffer catalysis. The Brönsted β value of 0.65 is consistent with general-base catalysis, as are the solvent deuterium isotope effect of ca. 1.3 for the imidazole-catalysed hydrolysis of the protonated substrate and the ratio of 1.1 for the piperidine- and 2,2,4,4-tetramethylpiperidine-catalysed hydrolyses of the unprotonated form.


References

  1. Part 15: E. Carvalho, J. Iley, M. de J. Perry and E. Rosa, Pharm. Res., 1998, 15, 931 Search PubMed.
  2. V. S. Lucas and A. T. Huang, in Chemical Management of Melanoma, ed. H. F. Seigler, Martinns Nijhoff, The Hague, 1982 Search PubMed.
  3. T. A. Connors, P. M. Goddard, K. Merai, W. C. J. Ross and D. E. V. Wilman, Biochem. Pharmacol., 1976, 25, 241 CrossRef CAS.
  4. M. Julliard and G. Vernin, Ind. Eng. Chem. Prod. Res. Rev., 1981, 20, 287 Search PubMed.
  5. J. Iley, G. Ruecroft, E. Carvalho and E. Rosa, J. Chem. Res. (S), 1989, 162 Search PubMed.
  6. E. Carvalho, J. Iley and E. Rosa, J. Chem. Soc., Perkin Trans. 2, 1993, 865 RSC.
  7. R. Wolfenden, Biochemistry, 1963, 2, 1090 CrossRef CAS.
  8. R. W. Hay, L. J. Porter and P. J. Morris, Aust. J. Chem., 1966, 19, 1197 CAS.
  9. R. W. Hay and L. J. Porter, J. Chem Soc. (B), 1967, 1262 Search PubMed.
  10. I. M. Kovach, I. H. Pitman and T. Higuchi, J. Pharm. Sci., 1981, 70, 881 CAS.
  11. M. J. Cho and L. C. Haynes, J. Pharm. Sci., 1985, 74, 883 CAS.
  12. M. R. Wright, J. Chem Soc. (B), 1968, 548 RSC.
  13. E. Jensen and H. Bundgaard, Int. J. Pharm., 1991, 71, 117 CrossRef CAS.
  14. W. P. Jencks and J. Regenstein, ‘Ionization Constants of Acids and Bases’, in Handbook of Chemistry and Molecular Biology, 3rd edn., vol. 1, ed. G. D. Fasman, CRC Press, Cleveland, OH, 1976, p. 305 Search PubMed.
  15. S. P. Datta and B. R. Rabin, Trans. Faraday Soc., 1956, 52, 1117 RSC.
  16. J. T. Edsall and M. H. Blanchard, J. Am. Chem. Soc., 1933, 55, 2337 CrossRef CAS.
  17. B. Holmquist and T. Bruice, J. Am. Chem. Soc., 1969, 91, 2985 CrossRef CAS.
  18. N. S. Isaacs, Physical Organic Chemistry, Longman, Harlow, 1987 Search PubMed.
  19. R. G. Bates, Determination of pH, Wiley, New York, 1954 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.