The use of chemical shifts of hydroxy protons of oligosaccharides as conformational probes for NMR studies in aqueous solution. Evidence for persistent hydrogen bond interaction in branched trisaccharides

(Note: The full text of this document is currently only available in the PDF Version )

Corine Sandström, Herbert Baumann and Lennart Kenne


Abstract

The 1H NMR chemical shifts, vicinal coupling constants, temperature coefficients, exchange rates with solvent and NOEs have been measured for the hydroxy protons of a series of 15 branched trisaccharides in aqueous solution. These compounds are methyl α-D-galactopyranosides substituted at the 3- and 4-positions with either L-fucosyl or D-glucosyl groups. While most of the hydroxy protons in the trisaccharides have chemical shifts similar to those in the corresponding methyl monosaccharides (Δ[hair space][hair space]δ ≤ ±0.20 ppm), some hydroxy protons are found to exhibit large upfield shifts. The NMR data together with HSEA and MM2 calculations show a correlation between these large upfield shifts and the proximity of the hydroxy group to oxygen atoms. The largest upfield shifts are observed for hydroxy protons which are in close proximity to ring oxygens O(5). This dependency of chemical shifts of hydroxy protons on the electronic environment might be used as a conformational probe to improve the determination of conformation of oligosaccharides. The NMR data also show that in three branched trisaccharides, α-D-Glcp-(1→3)-[α-D-Glcp-(1→4)]-α-D-Galp-OMe, β-L-Fucp-(1→3)-[α-D-Glcp-(1→4)]-α-D-Galp-OMe and α-D-Glcp-(1→3)-[β-L-Fucp-(1→4)]-α-D-Galp-OMe, there is a persistent hydrogen bond interaction between the O(2′)H of the 3-linked sugar residue and the O(5″) of the 4-linked sugar residue. In the three compounds, a large upfield shift relative to the constituent methyl monosaccharide is observed for the hydroxy proton O(2′)H involved in hydrogen bonding with the O(5″) oxygen. Additional information about the conformation could also be obtained from the inter-residue NOEs involving the exchangeable hydroxy protons. These additional NOEs are in good agreement with a conformation in which the O(2′)H proton and the O(5″) oxygen atoms are involved in a hydrogen bond interaction.


References

  1. L. Poppe and H. van Halbeek, J. Am. Chem. Soc., 1991, 113, 363 CrossRef CAS.
  2. H. van Halbeek and L. Poppe, Magn. Reson. Chem., 1992, 30, S74 CAS.
  3. L. Poppe, R. Stuike-Prill, B. Meyer and H. van Halbeek, J. Biomol. NMR, 1992, 2, 109 CAS.
  4. L. Poppe and H. van Halbeek, J. Am. Chem. Soc., 1992, 114, 1092 CrossRef CAS.
  5. J.-R. Brisson, S. Uhrinova, R. J. Woods, M. van der Zwan, H. C. Jarrell, L. C. Paoletti, D. L. Kasper and H. J. Jennings, Biochemistry, 1997, 36, 3278 CrossRef CAS.
  6. R. Harris, T. J. Rutherford, M. J. Milton and S. W. Homans, J. Biomol. NMR, 1997, 9, 47 CrossRef CAS.
  7. C. Sandström, H. Baumann and L. Kenne, J. Chem. Soc., Perkin Trans. 2, 1998, 809 RSC.
  8. L. Poppe and H. van Halbeek, Struct. Biol., 1994, 1, 215 Search PubMed.
  9. S. Sheng and H. van Halbeek, Biochem. Biophys. Res. Commun., 1995, 215, 504 CrossRef CAS.
  10. B. Adams and L. Lerner, J. Am. Chem. Soc., 1992, 114, 4827 CrossRef CAS.
  11. B. R. Leeflang, J. F. G. Vliegenthart, L. M. J. Kroon-Batenburg, B. P. van Eijck and J. Kroon, Carbohydr. Res., 1992, 230, 41 CrossRef CAS.
  12. K. Bock, T. Frejd, J. Kihlberg and G. Magnusson, Carbohydr. Res., 1988, 176, 253 CrossRef CAS.
  13. D. R. Bundle, H. Baumann, J.-R. Brisson, S. M. Gagné, A. Zdanov and M. Cygler, Biochemistry, 1994, 33, 5183 CrossRef CAS.
  14. B. Adams and L. E. Lerner, Magn. Reson. Chem., 1994, 32, 225 CAS.
  15. S. Sheng, R. Cherniak and H. van Halbeek, Anal. Biochem., 1998, 256, 63 CrossRef CAS.
  16. H. Baumann, B. Erbing, P.-E. Jansson and L. Kenne, J. Chem. Soc., Perkin Trans. 1, 1989, 2153 RSC.
  17. H. Baumann, B. Erbing, P.-E. Jansson and L. Kenne, J. Chem. Soc., Perkin Trans. 1, 1989, 2167 RSC.
  18. J. A. Pople, W. G. Schneider and H. J. Bernstein, High Resolution Nuclear Magnetic Resonance, McGraw Hill, New York, 1959 Search PubMed.
  19. R. T. Fraser, M. Kaufman, P. Morand and G. Govil, Can. J. Chem., 1969, 47, 403 CAS.
  20. G. A. Jeffrey and W. Saenger, Hydrogen Bonding In Biological Structures, Springer, Berlin, 1991 Search PubMed.
  21. L. Poppe, J. Dabrowski, C.-W. von der Lieth, K. Koike and T. Ogawa, Eur. J. Biochem., 1990, 189, 313 CAS.
  22. J. Dabrowski and L. Poppe, J. Am. Chem. Soc., 1989, 111, 1510 CrossRef CAS.
  23. M. Piotto, V. Saudek and V. Sklenár, J. Biomol. NMR, 1992, 2, 661 CAS.
  24. D. Marion and K. Wüthrich, Biochem. Biophys. Res. Commun., 1983, 113, 967 CrossRef CAS.
  25. A. Derome and M. Williamson, J. Magn. Reson., 1990, 88, 177.
  26. C. Griesinger, G. Otting, K. Wüthrich and R. R. Ernst, J. Am. Chem. Soc., 1988, 110, 7870 CrossRef CAS.
  27. J. Jeener, B. H. Meier, P. Bachmann and R. R. Ernst, J. Chem. Phys., 1979, 71, 4546 CrossRef CAS.
  28. A. Bax and D. G. Davis, J. Magn. Reson., 1985, 63, 207 CAS.
  29. C. M. Dobson, L.-Y. Lian, C. Redfield and K. D. Topping, J. Magn. Reson., 1986, 69, 201 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.