Synthesis, structure, electrostatic properties and spectroscopy of 3-methyl-4,5,6,7-tetrafluoro-1H-indazole. An experimental and ab initio computational study[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Bruce A. Hathaway, Graeme Day, Michael Lewis and Rainer Glaser


Abstract

The azine of pentafluorobenzaldehyde had been previously prepared from pentafluorobenzaldehyde and hydrazine. However, the analogous reaction of 2,3,4,5,6-pentafluoroacetophenone 1 with hydrazine did not result in the formation of azine 3 but resulted instead in the formation of 3-methyl-4,5,6,7-tetrafluoro-1H-indazole, 4, via the hydrazone 2. The resulting indazole was characterized by high resolution mass spectroscopy and 1H-, 13C-, and 19F-NMR spectroscopy. The geometry and electrostatic properties of the parent indazole and its derivative, 4, were studied with ab initio quantum theory and density functional methods. Our optimized structure of the parent indazole computed at the MP2(fc)/6-311G** level is presumably more accurate than the structure derived from microwave measurements. The preferred conformer of 4 was determined from RHF/6-31G* energies and full normal mode analyses were used to characterize both conformers. The minimum structure of 4 was refined at the MP2(fc)/6-311G** level of theory and compared to the unsubstituted structure. The electrostatic properties of the parent indazole and 4 are discussed and compared to those of benzene and hexafluorobenzene calculated at the same level. Natural bond order (NBO) calculations were performed to rationalize the difference in direction of the dipole moments of the parent indazole and 4. The gauge-invariant atomic orbital (GIAO) method was employed to calculate atomic shielding tensors of the indazoles using density functional theory at the B3LYP/6-311+G(2d,p) level. The calculated chemical shifts were used to aid in assigning peaks in the NMR spectra.


References

  1. (a) G. S. Chen, M. Anthamatten, C. L. Barnes and R. Glaser, J. Org. Chem., 1994, 59, 4336 CrossRef CAS; (b) G. S. Chen, M. Anthamatten, C. L. Barnes and R. Glaser, Angew. Chem., Int. Ed. Engl., 1994, 33, 1081 CrossRef; (c) R. Glaser, G. S. Chen and C. L. Barnes, J. Org. Chem., 1993, 58, 7446 CrossRef CAS.
  2. R. Glaser, G. S. Chen, M. Anthamatten and C. L. Barnes, J. Chem. Soc., Perkin Trans. 2, 1995, 1449 RSC.
  3. G. S. Chen, J. K. Wilbur, C. L. Barnes and R. Glaser, J. Chem. Soc., Perkin Trans. 2, 1995, 2311 RSC.
  4. R. Glaser and G. S. Chen, Polym. Mater. Sci. Eng., 1996, 75, 229 Search PubMed.
  5. R. Glaser and G. S. Chen, J. Comput. Chem., 1998, 19, 1130 CrossRef CAS.
  6. The piezoelectric material 4-bromo-4′-methoxyacetophenone azine has been featured as the Molecule of the Month for December 1997, see http://www.bris.ac.uk/Depts/Chemistry/MOTM/motm.htm..
  7. Crystal structure of the organic piezoelectric 4-chloro-4′-methoxyacetophenone azine. R. Glaser, M. Lewis and C. L. Barnes, manuscript in preparation.
  8. D. Steiger, C. Ahlbrandt and R. Glaser, J. Phys. Chem. B, 1998, 102, 4257 CrossRef CAS.
  9. M. Lewis, C. Barnes and R. Glaser, Can. J. Chem., in the press Search PubMed.
  10. (a) K. Wolinski, J. F. Hilton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251 CrossRef CAS; (b) J. L. Dodds, R. McWeeny and A. J. Sadlej, Mol. Phys., 1980, 41, 1419; (c) R. Ditchfield, Mol. Phys., 1974, 27, 789 CAS; (d) R. McWeeny, Phys. Rev., 1962, 126, 1024 CrossRef; (e) F. London, J. Phys. Radium, Paris, 1937, 8, 397 Search PubMed.
  11. P. C. Hariharan and J. A. Pople, Theor. Chim., 1973, 28, 213 Search PubMed.
  12. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654 CrossRef CAS.
  13. J. A. Pople, A. P. Scott, M. W. Wong and L. Radom, Isr. J. Chem., 1993, 33, 345 CAS.
  14. C. Möller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS.
  15. R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650 CrossRef CAS.
  16. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold.
  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Revision C.3; Gaussian Inc., Pittsburgh, PA, 1995.
  18. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  19. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  20. B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200 CrossRef CAS.
  21. E. V. Aroskar, P. J. N. Brown, R. G. Plevey and R. Stephens, J. Chem. Soc. (C), 1968, 1569 RSC.
  22. G. G. Yacobson and V. M. Vlasov, Synthesis, 1976, 652 CrossRef.
  23. I. L. Knunyants, and G. G. Yakobson, eds., Syntheses of Fluoroorganic Compounds, Springer-Verlag, Berlin, 1985, p. 222 Search PubMed.
  24. (a) N. I. Petrenko and T. N. Gerasimova, J. Fluorine Chem., 1990, 49, 359 CrossRef CAS; (b) the work by Petrenko and Gerasimova suggested to us that indazole formation should occur at milder reaction conditions and this is indeed the case.
  25. W. Stadlbauer, Indazole (Benzopyrazole), in Houben-Weyl, Methoden der Organischen Chemie, Hetarenes III/2, pp. 764–864, Georg Thieme Verlag, Stuttgart, 1994, vol. E8b, (a)p. 786; (b)p. 796 Search PubMed.
  26. J. Catalan, O. Mo, P. Perez and M. Yanez, J. Mol. Struct., 1983, 94, 143 CrossRef.
  27. A. Escande, J. Lapasset, R. Faure, E.-J. Vincent and J. Elguero, Tetrahedron, 1974, 30, 2903 CrossRef CAS.
  28. M. H. Palmer and S. M. F. Kennedy, J. Mol. Struct., 1978, 43, 203 CrossRef CAS.
  29. (a) D. Kocjan, M. Hodoscek and D. Hadzi, J. Mol. Struct. (THEOCHEM), 1987, 152, 331 CrossRef; (b) M. Hodoscek, D. Kocjan and D. Hadzi, J. Mol. Struct. (THEOCHEM), 1988, 165, 115 CrossRef.
  30. B. Velino, W. Cane, A. Trombetti, G. Corbelli, F. Zerbetto and W. Caminati, J. Mol. Spectrosc., 1992, 155, 1 CAS.
  31. C. Williams and M. Whitehead, J. Mol. Struct. (THEOCHEM), 1997, 393, 9 CrossRef CAS.
  32. R. Glaser, C. L. Mummert, C. H. Horan and C. L. Barnes, J. Phys. Org. Chem., 1993, 6, 201 CAS.
  33. (a) J. Catalan, J. L. G. de Paz and J. Elguero, J. Chem. Soc., Perkin Trans. 2, 1996, 57 RSC; (b) For an Addendum, see: J. Catalan, J. L. G. de Paz and J. Elguero, J. Chem. Soc., Perkin Trans. 2, 1996, 1027 Search PubMed.
  34. P. Bouchet, A. Fruchier, G. Joncheray and J. Elguero, Org. Magn. Reson., 1977, 9, 716 Search PubMed.
  35. M. H. Palmer, R. H. Findlay, S. M. F. Kennedy and P. S. McIntyre, J. Chem. Soc., Perkin Trans. 2, 1975, 1695 RSC.
  36. A. Fruchier, V. Pellegrin, R. Schimpf and J. Elguero, Org. Magn. Reson., 1982, 18, 10 Search PubMed.
  37. For a similar discussion of the quadrupole moments of the 4-nitropyridine N-oxides NPO and POM, see: R. Glaser and G. S. Chen, Chem. Mater., 1997, 9, 28 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.