Copper-catalyzed homolytic and heterolytic benzylic and allylic oxidation using tert-butyl hydroperoxide

(Note: The full text of this document is currently only available in the PDF Version )

Gadi Rothenberg, Liron Feldberg, Harold Wiener and Yoel Sasson


Abstract

Allylic and benzylic alcohols were oxidized in good yields to the respective ketones by tert-butyl hydroperoxide (TBHP) in the presence of copper salts under phase-transfer catalysis conditions. This dehydrogenation was found to proceed via a heterolytic mechanism. CuCl2, CuCl, and even copper powder were equally facile as catalysts, as they were all transformed in situ to Cu(OH)Cl which was extracted into the organic phase by the phase-transfer catalyst (PTC). Deuterium labeling experiments evidenced the scission of the benzylic C–H bond in the rate-determining step. Nonproductive TBHP decomposition was not observed in the presence of the alcohol substrates. Conversely, the oxygenation of π-activated methylene groups in the same medium was found to be a free radical process, and the major products were the appropriate tert-butyl peroxides. Catalyst deactivation, solvent effects, and extraction effects are discussed. By applying Minisci’s postulations concerning the relative reactivity of TBHP molecules towards tert-butoxyl radicals in protic and nonprotic environments, the coexistence of the homolytic and the heterolytic pathways can be explained. A complete reaction mechanism is proposed, wherein the free-radical oxidation obeys Kochi’s mechanism, and the heterolytic dehydrogenation is based on either a high-valent CuIV[double bond, length half m-dash]O species or a [Cu(OH)Cl]2 species.


References

  1. D. T. Sawyer, A. Sobkowiak and T. Matsushita, Acc. Chem. Res., 1996, 9, 409 CrossRef.
  2. C. Walling, Acc. Chem. Res., 1998, 31, 155 CrossRef.
  3. P. A. MacFaul, D. D. M. Wayner and K. U. Ingold, Acc. Chem. Res., 1998, 31, 159 CrossRef CAS.
  4. (a) For a monograph on oxidation reactions, see R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981 Search PubMed; (b) for recent studies on the oxidation of allylic and benzylic alcohols, see K. P. Peterson and R. C. Larock, J. Org. Chem., 1998, 63, 3185 Search PubMed and refs. cited therein.
  5. (a) H. H. Szmant, Organic Building Blocks of the Chemical Industry, Wiley, New York, 1989, pp. 386–391 Search PubMed; (b) M. D. Clayton, Z. Marcinow and P. W. Rabideau, J. Org. Chem., 1996, 61, 6052 CrossRef CAS.
  6. (a) M. Nakayama, S. Shinke, Y. Matsushita, S. Ohira and S. Hayashi, Bull. Chem. Soc. Jpn., 1979, 52, 184 CAS; (b) W. G. Dauben, M. Lorber and D. S. Fullerton, J. Org. Chem., 1969, 34, 3587 CrossRef; (c) E. J. Parish, S. Chitrakorn and T.-Y. Wei, Synth. Commun., 1986, 16, 1371 CAS.
  7. (a) K. B. Sharpless and T. R. Verhoeven, Aldrichim. Acta, 1979, 12, 63 Search PubMed; (b) J. Muzart and A. Naît-Ajjou, J. Mol. Catal., 1991, 66, 155 CrossRef CAS; (c) Synthesis, 1993, 785 Search PubMed; (d) J. Muzart, Tetrahedron Lett., 1986, 27, 3139 CrossRef CAS; (e) 1987, 28, 2131; (f) S. Uemura and S. R. Patil, Tetrahedron Lett., 1982, 23, 4353 CrossRef CAS; (g) J. A. R. Salvador, M. L. Sa e Melo and A. S. C. Neves, Tetrahedron Lett., 1997, 38, 119 CrossRef CAS.
  8. (a) I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown and C. J. Urch, Science, 1996, 274, 2044 CrossRef CAS; (b) J. Muzart, J. Mol. Catal., 1991, 64, 381 CrossRef CAS.
  9. (a) M. T. Rispens, C. Zondervan and B. L. Feringa, Tetrahedron: Asymmetry, 1995, 6, 661 CrossRef CAS; (b) A. Levina and J. Muzart, Tetrahedron: Asymmetry, 1995, 6, 147 CrossRef CAS; (c) Z.-R. Lu, Y.-Q. Yin and D.-S. Jin, J. Mol. Catal., 1991, 70, 391 CrossRef CAS.
  10. Preliminary communication: L. Feldberg and Y. Sasson, J. Chem. Soc., Chem. Commun., 1994, 1807 Search PubMed.
  11. cf. (a) R. A. Miller, W. Li and G. R. Humphrey, Tetrahedron Lett., 1996, 37, 3429 CrossRef CAS; (b) M. Harre, R. Haufe, K. Nickish, P. Weinig, H. Weinmann, W. A. Kinney and X. Zhang, Org. Proc. Res. Dev., 1998, 2, 100 Search PubMed; (c) G. Rothenberg, H. Wiener and Y. Sasson, J. Mol. Catal., 1998, 136, 251 Search PubMed; (d) See also J. Muzart and A. Naît-Ajjou, in The Activation of Dioxygen and Homogenous Catalytic Oxidation, D. H. R. Barton, A. R. Martell and D. T. Sawyer, ed., Plenum Press, New York, 1993, p. 471 Search PubMed.
  12. For a monograph on the fundamentals of PTC, see C. M. Starks, C. L. Liotta and M. Halpern, Phase-Transfer Catalysis, Chapman and Hall, New York, 1994 Search PubMed.
  13. For a review on PTC extraction by hydrogen-bonding, see Y. Sasson and R. Neumann, in Handbook of Phase Transfer Catalysis, Y. Sasson and R. Neumann, ed., Chapman and Hall, London, 1997, pp. 510–546 Search PubMed.
  14. J. B. Sharkey and S. Z. Lewin, Thermochim. Acta, 1972, 3, 189 CrossRef CAS.
  15. I. W. C. E. Arends, K. U. Ingold and J. Lusztyk, J. Am. Chem. Soc., 1993, 115, 466 CrossRef CAS.
  16. Preliminary communication: L. Feldberg and Y. Sasson, Tetrahedron Lett., 1996, 12, 2063 Search PubMed.
  17. (a) J. K. Kochi, Tetrahedron, 1962, 18, 483 CrossRef CAS; (b) J. Am. Chem. Soc., 1962, 84, 1572 Search PubMed.
  18. (a) F. Minisci, F. Fontana, S. Araneo, F. Recupero, S. Banfi and S. Quici, J. Am. Chem. Soc., 1995, 117, 226 CrossRef CAS; (b) F. Minisci, F. Fontana, S. Araneo, F. Recupero and L. Zhao, Synlett, 1996, 119 CrossRef CAS.
  19. H. Paul, R. D. Small and J. C. Scaiano, J. Am. Chem. Soc., 1978, 102, 4520 CrossRef.
  20. E. Napadensky and Y. Sasson, J. Chem. Soc., Chem. Commun., 1991, 65 RSC.
  21. Similar transient high oxidation state copper species have been envisaged: (a) D. H. R. Barton, S. D. Bévière, W. Chavasiri, É. Csuhai and D. Doller, Tetrahedron, 1992, 48, 2895 CrossRef CAS; (b) S.-I. Murahashi, Y. Oda, T. Naota and M. Komiya, J. Chem. Soc., Chem. Commun., 1993, 139 RSC.
  22. J. Muzart and A. Naît-Ajjou, J. Mol. Catal., 1994, 92, 277 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.