Hydrolytic products of diphthalimidodiethylamine and temperature independent sensitized luminescence of their lanthanide(III) complexes

(Note: The full text of this document is currently only available in the PDF Version )

Dawn M. Y. Barrett, Ishenkumba A. Kahwa, Bernd Radüchel, Andrew J. P. White and David J. Williams


Abstract

Syntheses and structural and luminescence studies of hydrolytic products of diphthalimidodiethylamine (DPDA) and their lanthanide(III) compounds have been undertaken in order to determine the potential for the phthalamate functionality to sensitize intense Eu3+ and Tb3+ emission via the ‘antenna effect’. Acid promoted hydrolysis of the relatively simple DPDA is efficient; hydrolysis is negligible at pH > 11. At pH 2–3, hydrolysis to phthalic acid (1) occurs which upon interaction with DPDA yields the phthalic acid–DPDA supramolecular hydrate, DPDAH–HP·1.75H2O. With a potassium carbonate–ethanol–acetonitrile mixture containing a small amount of water, the novel phthalamate–phthalimide H2·H2O is formed while at pH ca. 9–10 the new diphthalamate Na23·3H2O is formed. These transformations have been confirmed by single crystal X-ray analyses of DPDAH–HP·1.75H2O and H2·H2O. The crystal structures of DPDAH–HP· 1.75H2O and H2·H2O reveal that the phthalamates and phthalimides are stabilized by non-covalent (e.g. π–π stacking and hydrogen bonding) interactions which are of interest as potential conduits for energy transfer and are responsible for molecular aggregations seen in FAB mass spectrometry of H2·H2O and Na23·H2O. Europium(III) compounds of 32– and H2 exhibit intense sensitized red emission which is, surprisingly, temperature independent.


References

  1. (a) R. C. Howell, K. V. N. Spence, A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 1996, 961 RSC and references therein; (b) I. A. Kahwa, S. Folkes, D. J. Williams, S. V. Ley, C. A. O'Mahoney and G. L. McPherson, J. Chem. Soc., Chem. Commun., 1989, 1531 RSC; (c) K. D. Matthews, S. Bailey-Folkes, I. A. Kahwa, G. L. McPherson, C. A. O'Mahoney, S. V. Ley, D. J. Williams, C. J. Goombridge and C. J. O'Connor, J. Phys. Chem., 1992, 96, 7021 CrossRef CAS.
  2. P. R. Selvin, J. Jancarik, M. Li and L.-W. Hung, Inorg. Chem., 1996, 34, 700 CrossRef CAS.
  3. A. Døssing, H. Toftlund, A. Hazell, J. Bourssa and P. C. Ford, J. Chem. Soc., Dalton Trans., 1997, 355 Search PubMed.
  4. C. Pigeut, J.-C. G. Bünzli, G. Bernardinelli, G. Hopfagartner, S. Petoud and O. Schaad, J. Am. Chem. Soc., 1996, 118, 6681 CrossRef CAS.
  5. Z. Wang, J. Reibenspies and A. E. Martell, Inorg. Chem., 1997, 36, 629 CrossRef CAS.
  6. C. Piguet, G. Hopfagartner, A. F. Williams and J.-C. G. Bünzli, J. Chem. Soc., Chem. Commun., 1995, 491 RSC.
  7. C. Pigeut, G. Bernardinelli, J.-C. G. Bünzli, S. Petoud and G. Hopfagartner, J. Chem. Soc., Chem. Commun., 1995, 2575 RSC.
  8. N. Sabbatini, M. Guardigli and J.-M. Lehn, Coord. Chem. Rev., 1993, 123, 201 CrossRef CAS.
  9. L. Fabbrizz and A. Poggi, Chem. Soc. Rev., 1995, 24, 197 RSC.
  10. V. Balzani and F. Scandola, Supramolecular Photochemistry, Ellis Horwood, Chichester, 1991 Search PubMed.
  11. S. F. Mason, Mol. Phys., 1975, 30, 1829 CAS; S. P. Sinha and E. Butter, Mol. Phys., 1969, 16, 285 CAS; B. R. Judd, Phys. Rev., 1973, 10, 195 Search PubMed; G. S. Ofelt, J. Chem. Phys., 1962, 37, 511 CrossRef CAS; J. H. Försberg, Coord. Chem. Rev., 1973, 10, 195 CrossRef CAS; J.-C. G. Bünzli, in Lanthanide Probes in Life, Chemical and Earth Sciences, ed. J.-C. G. Bünzli and G. R. Choppin, Elsevier, Amsterdam, 1989, p. 219 Search PubMed; C. Fouassier, in Encyclopaedia of Inorganic Chemistry, ed. R. B. King, Wiley, New York, 1994, p. 1984 Search PubMed.
  12. D. M. Y. Barrett, I. A. Kahwa, G. L. McPherson and J. T. Mague, J. Org. Chem., 1995, 60, 5946 CrossRef CAS.
  13. D. M. Y. Barrett, I. A. Kahwa and D. J. Williams, Acta. Crystallogr., Sect. C, 1996, 52, 2069 CrossRef.
  14. J. W. Burlow, R. S. Davidson, A. Lewis and D. R. Russell, J. Chem. Soc., Perkin Trans. 2, 1997, 1103 Search PubMed.
  15. G. H. Dieke, Spectra and energy levels of rare earth ions in crystals, Interscience, New York, 1968 Search PubMed.
  16. D. Parker, Chem. Soc. Rev., 1990, 19, 271 RSC; P. Gueirriero, J. Tamburini and P. A. Vigato, Coord. Chem. Rev., 1995, 139, 17 CrossRef CAS.
  17. J. D. Doyle, A. Harriman and G. L. Newport, J. Chem. Soc., Perkin Trans. 2, 1979, 799 RSC.
  18. B. Zerner and M. L. Bender, J. Am. Chem. Soc., 1961, 83, 2267 CrossRef CAS.
  19. H. Kuppers, Z. Kristallogr., 1990, 192, 97.
  20. L. Dexter, J. Chem. Phys., 1953, 21, 836 CrossRef CAS; Th. Förster, Ann. Phys. (Leipzig), 1948, 2, 55 Search PubMed.
  21. (a) R. Reinsfield and C.-K. Jörgensen, Inorganic Concepts 1. Lasers and Excited States of Rare Earths, Springer-Verlag, Berlin, 1977 Search PubMed; (b) J. Loriers, J. P. Denis and J. P. Briffant, C. R. Acad. Sci. Paris, Ser. B, 1966, 262, 496 Search PubMed; A. K. Levin and F. C. Palilla, Appl. Phys. Lett., 1964, 5, 118 CrossRef CAS; J. A. Baglio and G. Gashurov, Acta. Crystallogr., Sect. B, 1968, 24, 292 CrossRef CAS.
  22. K. D. Matthews, I. A. Kahwa and D. J. Williams, Inorg. Chem., 1994, 33, 1382 CrossRef CAS.
  23. B. Alpha, R. Ballardini, V. Balzani, J.-M. Lehn, S. Perathoner and N. Sabbatini, Photochem. Photobiol., 1990, 52, 409.
  24. R. C. Holz, G. E. Meister and W. de W. Horrocks, Jr., Inorg. Chem., 1990, 29, 5193.
  25. R. A. Fairman, W. A. Gallimore, K. V. N. Spence and I. A. Kahwa, Inorg. Chem., 1994, 33, 823 CrossRef CAS.
  26. SHELXTL PC Release 5.03, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1994.
Click here to see how this site uses Cookies. View our privacy policy here.