Configuration and stereodynamics of exo/endo-isomeric push-pull alkenes of pentadiene structure

(Note: The full text of this document is currently only available in the PDF Version )

Erich Kleinpeter, Matthias Heydenreich, Jochen Woller, Gunter Wolf, Andreas Koch, Gerhard Kempter and Kalevi Pihlaja


Abstract

The configuration of the two double bonds in a series of alkenyl-substituted cyclic push-pull pentadienes [-1,3- (1–9, endocyclic) and -1,4-dienes (1–9, exocyclic)], the corresponding preferred ground state conformations and the stereodynamics were studied by the whole arsenal of 1D and 2D NMR spectroscopic methods, mass spectrometry and parallel molecular modelling. The configuration was found strongly dependent on the ring size (five-, six-, seven- and eight-membered). The dynamic phenomena found in the 1H and 13C NMR spectra were proved to result from the sterically hindered rotation about the C2–C3 bond; the torsional barriers were determined by dynamic NMR spectroscopy and also estimated by semi-empirical and ab initio quantum chemical calculations.


References

  1. J. Woller, PhD Thesis, Potsdam, 1996.
  2. K. Pihlaja, P. Oksman, J. Woller, G. Kempter and E. Kleinpeter, unpublished results.
  3. G. Fischer, W.-D. Rudorf and E. Kleinpeter, Magn. Reson. Chem., 1991, 29, 212 CAS.
  4. E. Kleinpeter, K. Rasch, W.-D. Rudorf and J. Schmidt, J. Prakt. Chem., 1991, 333, 131 CAS.
  5. J. Sandström and I. Wennerbeck, Acta Chem. Scand., Ser. B, 1970, 24, 1191 Search PubMed.
  6. Y. Shvo and I. Belsky, Tetrahedron, 1969, 25, 4649 CrossRef CAS.
  7. I. Belsky, H. Dodiuk and Y. Shvo, J. Org. Chem., 1977, 42, 2734 CrossRef CAS.
  8. E. Kleinpeter, St. Thomas, G. Uhlig and W.-D. Rudorf, Magn. Reson. Chem., 1993, 31, 714 CAS.
  9. H. Shanan-Atidi and K. H. Bar-Eli, J. Phys. Chem., 1970, 74, 961 CrossRef CAS.
  10. K. Pihlaja and E. Kleinpeter, Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis, Methods in Stereochemical Analysis, ed. A. P. Marchand, VCH Publishers, New York, Weinheim, Cambridge, 1994 Search PubMed.
  11. Also 2, 3(n= 2, exo) decompose at higher temperatures; however, the signals of the decomposition products do not overlap with the H1 signals and the coalescence phenomena could be studied.
  12. K. Yoshikawa and H. Terada, J. Am. Chem. Soc., 1982, 104, 7644 CrossRef CAS; A. Safarzadeh-Amiri, Can. J. Chem., 1984, 62, 1895 CAS; Y. Yamamoto, T. Okayima, Y. Fukazawa, T. Fujii, Y. Hata and S. Sawada, J. Chem. Soc., Perkin Trans. 2, 1998, 561 RSC.
  13. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221 CrossRef CAS.
  14. SYBYL® Molecular Modelling Software, version SYBYL 6.4, TRIPOS Inc.
  15. J. Baker, J. Comput. Chem., 1986, 7, 385 CrossRef CAS.
  16. GAUSSIAN94, Revision E.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanow, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, Gaussian Inc., Pittsburg, PA, 1995.
  17. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1986 Search PubMed.
  18. C. Peng and H. B. Schlegel, Israel J. Chem., 1993, 33, 449 Search PubMed.
  19. C. Peng, P. Y. Ayala, H. B. Schlegel and M. J. Frisch, J. Comput. Chem., 1996, 17, 49 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.