Conformational studies of calix[5]arenes containing a single alkanediyl bridge[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Silvio E. Biali, Volker Böhmer, Ishay Columbus, George Ferguson, Cordula Grüttner, Flavio Grynszpan, Erich F. Paulus and Iris Thondorf


Abstract

Six new calix[5]arenes substituted at one of the methylene bridges by methyl, ethyl, isopropyl, tert-butyl, p-tolyl and p-nitrophenyl have been synthesised by heat induced (3+2) fragment condensation of a linear trimer with the corresponding bishydroxymethylated alkanediyl diphenols in boiling xylene. These conditions give the calix[5]arenes more reliably in about 20–30% yield, while the corresponding condensation with bisbromomethylated alkanediyl diphenols leads to complex mixtures from which sometimes only a calix[8]arene could be isolated. In agreement with molecular mechanics calculations the calix[5]arenes prefer the cone conformation with an equatorial position of the alkyl or aryl substituent at the bridge. From variable temperature 1H NMR spectroscopy the conformational equilibria and the energy barriers for the cone-to-cone ring inversion have been determined. Single crystal X-ray analyses have been performed for the calix[5]arene substituted by tert-butyl and for the corresponding tert-butyl substituted dinuclear precursor.


References

  1. For a review on calixarenes see: V. Böhmer, Angew. Chem., 1995, 107, 785 Search PubMed; Angew. Chem., Int. Ed. Engl., 1995, 34, 713 CrossRef.
  2. Up to 20% are available by a one-pot reaction: D. R. Stewart and C. D. Gutsche, Org. Prep. Proc. Int., 1993, 25, 137 Search PubMed see also K. Iwamoto, K. Araki and S. Shinkai, Bull. Chem. Soc. Jpn., 1994, 67, 1499 Search PubMed.
  3. For example, the number of partially O-alkylated derivatives, as well as the number of potential conformational isomers in a completely O-alkylated product is higher than with calix[4]arenes.
  4. D. R. Stewart, M. Krawieck, R. P. Kashyap, W. H. Watson and C. D. Gutsche, J. Am. Chem. Soc., 1995, 117, 586 CrossRef CAS.
  5. For recent examples of guest binding in the cavity of calix[5]arene derivatives see: (a) T. Haino, M. Yanase and Y. Fukazawa, Tetrahedron Lett., 1997, 38, 3739 CrossRef CAS; (b) T. Haino, M. Yanase and Y. Fukazawa, Angew. Chem., 1998, 110, 1004 CrossRef; Angew. Chem., Int. Ed. Engl., 1998, 37, 997 Search PubMed; (c) S. Pappalardo and M. F. Parisi, J. Org. Chem., 1996, 61, 8724 CrossRef CAS; (d) R. Arnecke, V. Böhmer, R. Cacciapaglia, A. Dalla Cort and L. Mandolini, Tetrahedron, 1997, 53, 4901 CrossRef CAS; (e) F. Arnaud-Neu, S. Fuangswasdi, A. Notti, S. Pappalardo and M. F. Parisi, Angew. Chem., 1998, 110, 120 CrossRef; (f) see also J. W. Steed, C. P. Johnson, R. K. Juneja, R. S. Burkhalter and J. L. Atwood, Supramol. Chem., 1996, 6, 235 Search PubMed.
  6. See for instance: (a) J. F. Gallagher, G. Ferguson, V. Böhmer and D. Kraft, Acta Crystallogr., Sect. C, 1994, 50, 73 CrossRef; (b) M. Perrin and S. Lecocq, J. Inclusion Phenom. Mol. Recognit. Chem., 1991, 11, 171 CAS.
  7. (a) J. W. Steed, C. P. Johnson, C. L. Barnes, R. K. Juneja, J. L. Atwood, S. Reilly, R. L. Hollis, P. H. Smith and D. L. Clark, J. Am. Chem. Soc., 1996, 117, 11 426; (b) C. P. Johnson, J. L. Atwood, J. W. Steed, C. B. Bauer and R. D. Rogers, Inorg. Chem., 1996, 35, 2602 CrossRef CAS.
  8. J. M. Van Gelder, O. Aleksiuk and S. E. Biali, J. Org. Chem., 1996, 61, 8419 CrossRef CAS.
  9. S. E. Biali, V. Böhmer, S. Cohen, G. Ferguson, C. Grüttner, F. Grynszpan, E. F. Paulus, I. Thondorf and W. Vogt, J. Am. Chem. Soc., 1996, 118, 12 938 CrossRef CAS.
  10. G. Sartori, R. Maggi, F. Bigi, A. Arduini, A. Pastorio and C. Porta, J. Chem. Soc., Perkin Trans. 1, 1994, 1657 RSC.
  11. M. Bergamaschi, F. Bigi, M. Lanfranchi, R. Maggi, A. Pastorio, M. A. Pellinghelli, F. Peri, C. Porta and G. Sartori, Tetrahedron, 1997, 53, 13 037 CrossRef CAS.
  12. K. No and K. M. Kwan, Synthesis, 1996, 1293 CrossRef CAS.
  13. Compare also T. Haino, T. Harano, K. Matsumura and Y. Fukazawa, Tetrahedron Lett., 1996, 36, 5793 Search PubMed.
  14. This downfield shift of the axial protons in the cone conformation of endo-calix[4]arenes is caused by the proximity to the OH groups, since in exo-calix[4]arenes the equatorial protons appear at lower field. See: S. E. Biali, V. Böhmer, J. Brenn, M. Frings, I. Thondorf, W. Vogt and J. Wöhnert, J. Org. Chem., 1997, 62, 8350 Search PubMed.
  15. F. A. L. Anet and V. J. Basus, J. Magn. Reson., 1978, 32, 339 CAS For papers using this method see for example: S. P. Adams and H. W. Whitlock, J. Am. Chem. Soc., 1982, 104, 1602 Search PubMed; D. Casarini, L. Lunazzi and D. Macciantelli, J. Chem. Soc., Perkin Trans. 2, 1985, 1839 CrossRef CAS.
  16. C. D. Gutsche and L. J. Bauer, J. Am. Chem. Soc., 1985, 107, 6052 CrossRef.
  17. An unusually high energy barrier of 17.3 kcal mol–1 was found for a “resorcinol derived” calix[5]arene consisting of five 2,4-dihydroxybenzophenone units: M. Tabatabai, W. Vogt, V. Böhmer, G. Ferguson and E. F. Paulus, Supramol. Chem., 1994, 4, 147 Search PubMed.
  18. This conformation can be designated as TTTtt(17.3), see I. Thondorf and J. Brenn, J. Chem. Soc., Perkin Trans. 2, 1997, 2293 Search PubMed.
  19. J. F. Gallagher, G. Ferguson, V. Böhmer and D. Kraft, Acta Crystallogr., Sect. C, 1994, 50, 73 CrossRef and references cited there.
  20. For a recent example with an average O⋯O-distance of 2.955 Å see: L. Dumazet, N. Ehlinger, F. Vocanson, S. Lecocq, R. Lamartine and M. Perrin, J. Inclusion Phenom. Mol. Recognit. Chem., 1997, 29, 175 Search PubMed.
  21. I. Thondorf, G. Hillig, W. Brandt, J. Brenn, A. Barth and V. Böhmer, J. Chem. Soc., Perkin Trans. 2, 1994, 2259 RSC.
  22. (a) J. Gasteiger and M. Marsili, Tetrahedron, 1980, 36, 3219 CrossRef CAS; (b) M. Marsili and J. Gasteiger, Croat. Chem. Acta, 1980, 53, 601 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.