Theoretical near UV and VIS electronic spectra for the ZnII–anhydrotetracycline complex

(Note: The full text of this document is currently only available in the PDF Version )

Hélio F. Dos Santos, Wagner B. De Almeida and Michael C. Zerner


Abstract

The UV–VIS electronic spectra for the free ligand and complexed forms of the ZnII–AHTC system have been analyzed using the configuration interaction (CI) procedure as implemented in the ZINDO program. The main transitions in the UV and VIS region are assigned and compared with the experimental data available. The electronic spectrum for the free ligand, the tautomeric form ionized at O11 [LH(O11)], is very close to that observed experimentally, with the calculated absorption band centered at 429 nm and the experimental one at 428 nm. This absorption is attributed to a π→π* transition of the BCD ring system. Comparing the visible spectra for the complexed forms with that obtained for the free ligand, a blue shift is observed for all structures analyzed, except for the complex II-B, where a red shift from 429 nm (free ligand) to 436 nm (complexed form) was calculated. Experimentally, a bathochromic shift from 428 nm to 440 nm was observed with the [ZnII]/[AHTC] ratio ranging from 0 to 3. These values are very close to those calculated for the complex II-B, in which the AHTC acts as a tridentate ligand. The possibility of the formation of the binuclear complex (M2L) was discarded, once it was observed that the second metal complexation shifts the VIS band to lower wavelength values. This effect is not observed in the experimental spectrum at high ZnII concentration.


References

  1. D. Voet and J. G. Voet, Biochemistry, 2nd end., John Wiley & Sons, Inc., New York, USA, 1995 Search PubMed.
  2. A. I. Laskin and J. A. Last, Antibiot. Chemother., 1971, 17, 1 Search PubMed.
  3. L. Lambs and G. Berthon, Inorg. Chim. Acta, 1988, 151, 33 CrossRef CAS.
  4. W. A. Baker, Jr. and P. M. Brown, J. Am. Chem. Soc., 1966, 88, 1314 CrossRef CAS.
  5. K. H. Jogun and J. J. Stezowski, J. Am. Chem. Soc., 1976, 98, 6018 CrossRef CAS.
  6. G. W. Everett, Jr., J. Gulbis and J. Shaw, J. Am. Chem. Soc., 1982, 104, 445 CrossRef.
  7. L. Lambs, B. D.-Le Révérend, H. Kozlowski and G. Berthon, Inorg. Chem., 1988, 27, 3001 CrossRef CAS.
  8. M. Jezowska-Bojczuk, L. Lambs, H. Kozlowski and G. Berthon, Inorg. Chem., 1993, 32, 428 CrossRef CAS.
  9. J. M. De Siqueira, S. Carvalho, E. B. Paniago, L. Tosi and H. Beraldo, J. Pharm. Sci., 1994, 83, 291.
  10. F. C. Machado, C. Demicheli, A. Garnier-Suillerot and H. Beraldo, J. Inorg. Biochem., 1995, 60, 163 CrossRef CAS.
  11. S. V. De Mello-Matos and H. Beraldo, J. Braz. Chem. Soc., 1995, 6, 405 Search PubMed.
  12. W. B. De Almeida, L. R. A. Costa, H. F. Dos Santos and M. C. Zerner, J. Chem. Soc., Perkin Trans. 2, 1997, 1335 RSC.
  13. H. F. Dos Santos, W. B. De Almeida and M. C. Zerner, J. Pharm. Sci., 1998, 87, 190 CrossRef.
  14. W. B. De Almeida, H. F. Dos Santos, W. R. Rocha and M. C. Zerner, J. Chem. Soc., Dalton Trans., 1998, 15, 2531 RSC.
  15. W. B. De Almeida, H. F. Dos Santos and M. C. Zerner, J. Pharm. Sci., 1998, 87, 1101 CrossRef CAS.
  16. W. B. De Almeida, H. F. Dos Santos and M. C. Zerner, to be published.
  17. (a) J. Ridley and M. C. Zerner, Theor. Chim. Acta, 1973, 32, 111 CrossRef CAS; (b) M. C. Zerner, G. H. Loew, R. F. Kirchner and V. T. Mueller-Westerholf, J. Am. Chem. Soc., 1980, 102, 589 CrossRef CAS; (c) J. D. Head and M. C. Zerner, Chem. Phys. Lett., 1986, 131, 359 CrossRef; (d) W. D. Edwalds and M. C. Zerner, Theor. Chim. Acta, 1987, 72, 347.
  18. M. M. Karelson and M. C. Zerner, J. Phys. Chem., 1992, 96, 6949 CrossRef CAS.
  19. J. M. Siqueira, MSc Thesis, Depto. de Química, UFMG, 1989.
  20. A. Klamt and G. Schuurmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799 RSC.
  21. A. Hinchliffe and R. W. Munn, Molecular Electromagnetism, John Wiley & Sons, Chichester, 1985 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.