A boronic acid–diol interaction is useful for chiroselective transcription of the sugar structure to the Δ- versus Λ-[CoIII(bpy)3]3+ ratio

(Note: The full text of this document is currently only available in the PDF Version )

Toshihisa Mizuno, Masayuki Takeuchi, Itaru Hamachi, Kazuaki Nakashima and Seiji Shinkai


Abstract

In order to apply boronic acid–saccharide interactions to the chiroselective synthesis of Δ- and Λ-[CoIII(bpy)3]3+ saccharide-binding ligands, 2,2′-bipyridine-4-boronic acid (bpymb) and 2,2′-bipyridine-4,4′-diboronic acid (bpydb) were newly synthesized. It was shown that most D-saccharides form cyclic 1∶1 complexes with bpydb to afford the CD-active species. The positive exciton coupling band implies that two pyridine rings are twisted in a clockwise direction ((R)-chirality). In contrast, such a CD-active species was not yielded from bpymb. The treatment of the bpydb–D-saccharide complexes with Co(OAc)2 gave the substitution-active [CoII(bpyba)3]4––saccharide complexes, which were oxidized to the substitution-inactive [CoIII(bpyba)3]3––saccharide complexes. In this stage, the Δ vs. Λ ratio was fixed. The complexes were converted to [CoIII(bpy)]3+ by treatment with AgNO3 and the e.e. was determined by comparison with authentic Δ- or Λ-[CoIII(bpy)]3+. The Δ-isomer was obtained in excess from most D-saccharides but the Λ-isomer was also obtained from D-fructose and D-fucose. At 4 °C, the largest e.e. for bpydb was attained with D-glucose (47% e.e.; Δ excess). Under the same reaction conditions the bpymb + D-glucose system gave 16% e.e. (Δ excess). The e.e. of the bpydb + D-glucose system increased with lowering the reaction temperature and at –25 °C it reached 79% e.e. The foregoing results clearly establish that the saccharide-templated synthesis is useful as a new concept for the preparation of chiral tris(2,2′-bipyridine)–metal complexes. Furthermore, the Δ vs. Λ equilibrium can be shifted in either direction by the selection of saccharide enantiomers.


References

  1. For comprehensive reviews on hydrogen-bond-based synthetic receptors, see: J. Rebek, Jr., Angew. Chem., Int. Ed. Engl., 1990, 29, 245 Search PubMed; A. D. Hamilton, Bioorg. Chem. Front., 1991, 2, 115 CrossRef; J.-H. Fuhrhop and J. Köning, Membranes and Molecular Assemblies: The Synkinetic Approach, ed. J. F. Stoddart, Royal Society of Chemistry, Cambridge, 1994 Search PubMed; G. M. Whitesides, E. E. Simanek, J. P. Mathias, T. S. Christopher, N. C. Donovan, M. Mathai and M. G. Dana, Acc. Chem. Res., 1995, 28, 37 Search PubMed.
  2. J. Yoon and A. W. Czarnik, J. Am. Chem. Soc., 1992, 114, 5874 CrossRef CAS; L. K. Mohler and A. W. Czarnik, ibid., 1993, 115, 2998 Search PubMed.
  3. P. R. Westmark and B. D. Smith, J. Am. Chem. Soc., 1994, 116, 9343 CrossRef CAS and references cited therein.
  4. Y. Nagai, K. Kobayashi, H. Toi and Y. Aoyama, Bull. Chem. Soc. Jpn., 1993, 66, 2965 CAS.
  5. G. Wulff, S. Krieger, B. Kubneweg and A. Steigel, J. Am. Chem. Soc., 1994, 116, 409 CrossRef CAS and references cited therein.
  6. K. Tsukagoshi and S. Shinkai, J. Org. Chem., 1991, 56, 4089 CrossRef CAS; Y. Shiomi, M. Saisho, K. Tsukagoshi and S. Shinkai, J. Chem. Soc., Perkin Trans. 1, 1993, 2111 RSC; J. C. Norrild and H. Eggert, J. Am. Chem. Soc., 1995, 117, 1479 CrossRef CAS.
  7. For comprehensive reviews on boronic acid-based saccharide receptors, see: T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Supramol. Chem., 1995, 6, 141 Search PubMed; T. D. James, P. Linnane and S. Shinkai, Chem. Commun., 1996, 281 CrossRef CAS; T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Angew. Chem., Int. Ed. Engl., 1996, 35, 1911 RSC.
  8. T. D. James, K. R. A. S. Sandanayake and S. Shinkai, Angew. Chem., 1994, 106, 2287 CAS; Angew. Chem., Int. Ed. Engl., 1994, 22, 2207 Search PubMed; J. Chem. Soc., Chem. Commun., 1994, 477 Search PubMed.
  9. M. Mikami and S. Shinkai, J. Chem. Soc., Chem. Commun., 1995, 153 RSC; Chem. Lett., 1995, 603 Search PubMed; M. Takeuchi, T. Imada and S. Shinkai, J. Am. Chem. Soc., 1996, 118, 10 658 Search PubMed.
  10. S. Arimori, M. Takeuchi and S. Shinkai, J. Am. Chem. Soc., 1996, 118, 245 CrossRef; L. D. Sarson, K. Ueda, M. Takeuchi and S. Shinkai, Chem. Commun., 1996, 619 RSC; M. Takeuchi, Y. Chin, T. Imada and S. Shinkai, ibid., 1996, 1867 Search PubMed.
  11. H. Yamashita, K. Amano, S. Shimada and K. Narasaka, Chem. Lett., 1996, 537 CAS; H. Yamashita and S. Narasaka, ibid., 1996, 539 Search PubMed.
  12. K. Nakashima and S. Shinkai, Chem. Lett., 1994, 1267 CAS.
  13. Preliminary communication: T. Mizuno, M. Takeuchi, I. Hamachi, K. Nakashima and S. Shinkai, Chem. Commun., 1997, 1793 Search PubMed.
  14. In 1964 Liu et al. reported that the asymmetric synthesis of [RuII(bpy)3]2+ is achieved (although in low e.e.) by the reaction of Ru2+ and 2,2′-bipyridine in the presence of sodium D-tartrate or sucrose: C. F. Liu, N. C. Liu and X. Bailar, Jr., Inorg. Chem., 1964, 3, 1085 Search PubMed This chirality is induced when D-tartrate or sucrose coordinated to Ru2+ is substituted with 2,2′-bipyridine and the concept is entirely different from the present system.
  15. This prospect is supported by our previous finding that the two planes of biphenyl-3′-boronic acid can be asymmetrically immobilized by added saccharides: K. Kondo, Y. Shiomi, M. Saisho, T. Harada and S. Shinkai, Tetrahedron, 1992, 48, 8239 Search PubMed.
  16. In the present research, the furanose vs. pyranose structural problem is not specified in detail. The appearance of a clear exciton coupling band in bpydb supports the view that the two boronic acid groups are intramolecularly bridged by the monosaccharide. Judging from the distance between the two boronic acid groups (ca. 7.4 Å), the distance between the 1,2-diol and the 4,6-diol which are useful as building sites in D-glucopyranoside is too short whereas that between the 1,2-diol and the 5,6-diol which are useful as building sites in D-glucofuranoside is long enough to interact with the two boronic acids. We now believe that the furanose form is used for the intramolecular bridging of the two boronic acids.
  17. D. F. Shriver, P. W. Atkins and C. H. Langfold, Inorganic Chemistry, 2nd edn., Oxford, 1994, p. 266 Search PubMed.
  18. F. H. Burstall and R. S. Nyholm, J. Chem. Soc., 1952, 3570 RSC.
  19. T. Kimura, S. Arimori, M. Takeuchi, K. Nagasaki and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1995, 1889 RSC; M. Takeuchi, T. Mizuno, M. Shinmori and S. Shinkai, Tetrahedron, 1996, 52, 1195 CrossRef CAS.
  20. K. Torssell, Ark. Kemi, 1957, 10, 473 Search PubMed.
  21. S. F. Mason and B. J. Deart, J. Chem. Soc., Dalton Trans., 1973, 949 RSC.
  22. K. Ohkubo, H. Ishida, T. Hamada and T. Inaoka, Chem. Lett., 1989, 1545 CAS; H. Ishida, T. Hamada, Y. Fujishima, Y. Saito and K. Ohkubo, Bull. Chem. Soc. Jpn., 1933, 66, 714.
  23. A. Tatehara and A. Muraida, Chem. Lett., 1996, 461.
  24. C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault and H. L. Bozec, Nature, 1995, 374, 339 CrossRef.
  25. D. Wenkert and R. B. Woodward, J. Org. Chem., 1983, 48, 283 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.