Precise recognition of nucleic acid bases by polymeric receptors in methanol. Predominance of hydrogen bonding over apolar interactions[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Hiroyuki Asanuma, Takayuki Hishiya, Takeshi Ban, Sumie Gotoh and Makoto Komiyama


Abstract

In methanol, poly(2-vinyl-4,6-diamino-1,3,5-triazine) (PVDAT) precisely recognizes nucleic acid bases and their derivatives through hydrogen-bond formation. The binding activity (uracil, thymine [double greater-than, compressed] cytosine, adenine > pyrimidine, purine ≈ 0) exactly coincides with increasing number in the complementary hydrogen-bonding sites of the guest towards the diaminotriazine residue. The guest-selectivity is higher than that achieved previously in water (H. Asanuma et al., Macromolecules, 1998, 31, 371), mainly because the guest-binding occurs mostly via the hydrogen bonding at aprotic sites provided by the polymeric receptor. Stacking and apolar interactions are ineffective in methanol. The copolymers of 2-vinyl-4,6-diamino-1,3,5-triazine with hydrophobic monomers (styrene and 4-vinylbiphenyl) show still higher guest-selectivities, due to the increased aprotic environment around the diaminotriazine residues.


References

  1. A preliminary communication: H. Asanuma, T. Ban, T. Hishiya, S. Gotoh and M. Komiyama, Polym. J., 1996, 28, 1024 Search PubMed.
  2. (a) M. M. Conn, G. Deslongchamps, J. de Mendoza and J. Rebek Jr., J. Am. Chem. Soc., 1993, 115, 3548 CrossRef; (b) Y. Kato, M. M. Conn and J. Rebek Jr., J. Am. Chem. Soc., 1994, 116, 3279 CrossRef CAS; (c) Y. Kato, M. M. Conn and J. Rebek Jr., Proc. Natl. Acad. Sci. USA, 1995, 92, 1208 CAS and references cited therein.
  3. (a) A. D. Hamilton and D. Van Engen, J. Am. Chem. Soc., 1987, 109, 5035 CrossRef CAS; (b) A. V. Muehldorf, D. Van Engen, J. C. Warner and A. D. Hamilton, J. Am. Chem. Soc., 1988, 110, 6561 CrossRef CAS; (c) E. Fan, S. A. V. Arman, S. Kincaid and A. D. Hamilton, J. Am. Chem. Soc., 1993, 115, 369 CrossRef CAS and references cited therein.
  4. (a) J. F. Constant, J. Fahy and J. Lhomme, Tetrahedron Lett., 1987, 28, 1777 CrossRef CAS; (b) K. Kurihara, K. Ohto, Y. Honda and T. Kunitake, J. Am. Chem. Soc., 1991, 113, 5077 CrossRef CAS; (c) J. S. Nowick and J. S. Chen, J. Am. Chem. Soc., 1992, 114, 1107 CrossRef CAS; (d) D. M. Perreault, X. Chen and E. V. Anslyn, Tetrahedron, 1995, 51, 353 CrossRef; (e) R. P. Bonar-Law and J. K. M. Sanders, J. Am. Chem. Soc., 1995, 117, 259 CrossRef CAS; (f) S. S. Yoon and W. C. Still, J. Am. Chem. Soc., 1993, 115, 823 CrossRef CAS; (g) G. R. Newkome, B. D. Woosley, E. He, C. N. Moorefield, R. Güther, G. R. Baker, G. H. Escamilla, J. Merrill and H. Luftmann, J. Chem. Soc., Chem. Commun., 1996, 2737 RSC; (h) M. Mammen, E. E. Simanek and G. M. Whitesides, J. Am. Chem. Soc., 1996, 118, 12 614 CrossRef CAS; (i) V. Marchi-Artzner, L. Jullien, T. Gulik-Krzywicki and J.-M. Lehn, Chem. Commun., 1997, 117 RSC and references cited therein.
  5. (a) On the molecular recognition by natural receptors, see K. A. Watson, E. P. Mitchell, J. N. Johnson, J. C. Son, C. J. F. Bichard, M. G. Orchard, G. W. J. Fleet, N. G. Oikonomakos, D. D. Leonidas, M. Kontou and A. Papageorgioui, Biochemistry, 1994, 33, 5745 Search PubMed; (b) H.-J. Böhm and G. Klebe, Angew. Chem., Int. Ed. Engl., 1996, 35, 2588 CrossRef.
  6. (a) J. V. Beach and K. J. Shea, J. Am. Chem. Soc., 1994, 116, 379 CrossRef CAS; (b) J. Matsui, T. Kato, T. Takeuchi, M. Suzuki, K. Yokoyama, E. Tamiya and I. Karube, Anal. Chem., 1993, 65, 2223 CAS; (c) M. J. Whitcombe, M. E. Rodriguez, P. Villar and E. N. Vulfson, J. Am. Chem. Soc., 1995, 117, 7105 CrossRef CAS; (d) G. Wulff, Angew. Chem., Int. Ed. Engl., 1995, 34, 1812 CrossRef CAS; (e) H. Asanuma, M. Kakazu, M. Shibata, T. Hishiya and M. Komiyama, Chem. Commun., 1997, 1971 RSC and references cited therein.
  7. A. R. Fersht, Trends Biochem. Sci., 1987, 12, 301 CrossRef CAS.
  8. H. Asanuma, T. Ban, S. Gotoh, T. Hishiya and M. Komiyama, Macromolecules, 1998, 31, 371 CrossRef CAS.
  9. Direct evidence of hydrogen bond formation in methanol was obtained by FTIR measurement: the carbonyl stretching band of uracil shifted to lower frequency on the adduct formation with PVDAT. A similar IR shift was also observed on the hydrogen bond formation between PVDAT and uracil in water, as previously reported in reference 8. This argument was further confirmed by the fact that 3-methyluracil, whose hydrogen bonding site is blocked by a methyl group, was hardly adsorbed by PVDAT.
  10. These values are slightly larger than the corresponding value for the complex formation between 2,6-dibutyramidopyridine (a model compound of DAT) and 1-butylthymine (90 m–1) in non-competitive chloroform.3b. In contrast, VDAT (monomer of PVDAT) hardly bound uracil in homogeneous DMSO–water mixture. See ref. 8.
  11. The slight decrease in the activity with increasing molecular size of the substituent is probably associated with the steric hindrance at the binding sites.
  12. T. Itahara, J. Chem. Soc., Perkin Trans. 2, 1996, 2695 RSC.
  13. Homopolymer of styrene or 4-vinylbiphenyl showed no adsorption activity towards all the guests used in this study.
  14. The great binding-activity of PVB-VDAT on adenine in water is ascribed to enhanced hydrophobic interactions.
  15. PAAm-VDAT was water-soluble when the VDAT/acrylamide ratio in the polymerization mixture was 1/5.
  16. For more hydrophobic copolymers (PST-VDAT and PVB-VDAT), it took about 1 h to attain the equilibrium.
  17. D. M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley Interscience, New York, 1984, p. 49 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.