Cooperativity between ligand binding and dimerisation in a derivative of ristocetin A

(Note: The full text of this document is currently only available in the PDF Version )

Ben Bardsley and Dudley H. Williams


Abstract

The dimerisation constant of the vancomycin group antibiotic ristocetin A has previously been shown to be lower when it is fully bound by ligand (analogues of bacterial cell wall precursors terminating in –Lys-D-Ala-D-Ala) than in its absence, i.e. dimerisation is anticooperative with ligand binding. A derivative of ristocetin A, desrhamno-ristocetin, has now been produced by enzymatic degradation, and the dimerisation constant of this derivative has been measured in the absence and presence of the bacterial cell wall precursor analogue N-acetyl-D-Ala-D-Ala. The dimerisation constant is shown to be greater in the presence of the ligand than in its absence, i.e. dimerisation is cooperative with ligand binding. This change in behaviour from anticooperativity to cooperativity is postulated to be associated with the partial equalisation of the binding affinities of the two sides of the dimer for ligand. It is therefore energetically more favourable for two ligand molecules to bind to the two halves of a desrhamno-ristocetin dimer than to two monomers.


References

  1. M. Foldes, R. Munro, T. C. Sorrell, S. Shankar and M. Toohey, J. Antimicrob. Chemother., 1983, 11, 21 CAS.
  2. H. C. Neu, Science, 1992, 257, 1064 CrossRef CAS.
  3. D. C. Jordan and P. E. Reynolds, in Vancomycin, ed. J. W. Corcoran and F. E. Hahn, Springer-Verlag, Berlin, 1974, vol. III Search PubMed.
  4. M. Nieto and H. R. Perkins, Biochem. J., 1971, 123, 780.
  5. P. Groves, M. S. Searle, I. Chicarelli-Robinson and D. H. Williams, J. Chem. Soc., Perkin Trans. 1, 1994, 659 RSC.
  6. J. P. Mackay, U. Gerhard, D. A. Beauregard, M. S. Westwell, M. S. Searle and D. H. Williams, J. Am. Chem. Soc., 1994, 116, 4581 CrossRef CAS.
  7. Y. R. Cho, A. J. Maguire, A. C. Try, M. S. Westwell, P. Groves and D. H. Williams, Chem. Biol., 1996, 3, 207 CrossRef CAS.
  8. V. Rajananda, A. F. Norris and D. H. Williams, J. Chem. Soc. Pak., 1979, 1, 29 Search PubMed.
  9. R. J. Dancer, A. C. Try and D. H. Williams, Chem. Eur. J., 1998, 4, 740 CrossRef CAS.
  10. G. Batta, M. F. Cristofaro, G. J. Sharman and D. H. Williams, Chem. Commun., 1996, 101 RSC.
  11. P. Groves, M. S. Searle, J. P. Waltho and D. H. Williams, J. Am. Chem. Soc., 1995, 117, 7958 CrossRef CAS.
  12. C. Romero, A. Manlon, J. Bastida and J. L. Iborra, Anal. Biochem., 1985, 149, 566 CAS.
  13. B. Bardsley, D. H. Williams and T. P. Baglin, Blood Coagulation Fibrinolysis, 1998, 9, 241 Search PubMed.
  14. H. R. Perkins, Biochem. J., 1969, 111, 195 CAS.
  15. J. C. J. Barna, D. H. Williams and M. P. Williamson, J. Chem. Soc., Chem. Commun., 1985, 253 Search PubMed.
  16. W. H. Press, B. P. Flannery, S. A. Tenkolsky and W. T. Vetterling, Numerical recipes in Pascal, Cambridge University Press, Cambridge, 1989 Search PubMed.
  17. U. Gerhard, J. P. Mackay, R. A. Maplestone and D. H. Williams, J. Am. Chem. Soc., 1993, 115, 232 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.