Proton chemical shifts in NMR. Part 12.1 Steric, electric field and conformational effects in acyclic and cyclic ethers

(Note: The full text of this document is currently only available in the PDF Version )

Raymond J. Abraham, Mark A. Warne and Lee Griffiths


Abstract

The proton resonance spectra of tetrahydropyran, at room temperature and –85 °C where the ring inversion is slow on the NMR timescale, 2-methoxy-, 3-methyl- and several 4-substituted tetrahydropyrans, 2-methyl-1,3-dioxolane and the rigid cyclic ethers 7-oxabicyclo[2.2.1]heptane and 1,8-cineole have been recorded and completely analysed.

These results together with literature data on acyclic and cyclic ethers (1,3- and 1,4-dioxane, dioxolane, 4-oxa-5α-androstane etc.) have allowed the determination of the oxygen substituent chemical shifts (SCS) in these systems. This data set consisting of 78 proton chemical shifts in 17 compounds has been used to test the application of a previous theoretical model of proton chemical shifts to these compounds.

It is shown that the model gives a very good account of the proton chemical shifts in these systems. The ether oxygen SCS are due to both steric and electrostatic terms, the steric term predominating at short distances (e.g. in the 1,3-diaxial interactions in methoxycyclohexanes).

Conformational isomerism in these compounds has also been investigated. Low temperature NMR gave ΔG (eq–ax) +1.0 kcal mol–1 for 4-hydroxy-THP. Analysis of the couplings in the CHCH2OH side chain of 2-(hydroxymethyl)-THP has shown that the preferred conformer is gt in both chloroform and acetone solvents.


References

  1. Part 11. R. J. Abraham, L. Griffiths and M. A. Warne, Magn. Reson. Chem., 1998, 36, 5179 Search PubMed.
  2. Encyclopedia of NMR, ed. D. M. Grant and R. K. Harris, Wiley, New York, 1996 Search PubMed.
  3. (a) R. F. Zurcher, Prog. Nucl. Magn. Reson. Spectrosc., 1967, 2, 205 CrossRef; (b) H.-J. Schneider, U. Buchheit, N. Becker, G. Schmidt and U. Siehl, J. Am. Chem. Soc., 1985, 107, 7027 CrossRef CAS; (c) L. D. Hall, Tetrahedron Lett., 1964, 25, 1457 CrossRef.
  4. Y. Yang, T. Haino, S. Usui and Y. Fukazawa, Tetrahedron, 1996, 32, 2325 CrossRef.
  5. C. P. Rader, J. Am. Chem. Soc., 1969, 91, 3248 CrossRef CAS.
  6. H. R. Buys and E. L. Eliel, Tetrahedron Lett., 1970, 2779 CrossRef CAS.
  7. K. Pihlaja and P. Ayras, Acta Chem. Scand., 1970, 24, 531 CAS.
  8. E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Organic Compounds, Wiley, New York, 1994 Search PubMed.
  9. J. Delmau, J. C. Duplan and M. Davidson, Tetrahedron, 1967, 23, 4371 CrossRef CAS.
  10. H. Booth, K. A. Khedhair and S. A. Readshaw, Tetrahedron, 1987, 43, 4699 CrossRef CAS.
  11. G. Gatti, A. L. Segre and C. Morandi, J. Chem. Soc. B, 1967, 1203 RSC.
  12. J. B. Lambert, R. G. Keske and D. K. Weary, J. Am. Chem. Soc., 1967, 89, 5921 CrossRef CAS.
  13. J. B. Lambert, C. E. Mixan and D. H. Johnson, J. Am. Chem. Soc., 1973, 95, 4634 CrossRef CAS.
  14. L. Canuel and M. St.-Jacques, J. Org. Chem., 1976, 41, 1380 CrossRef CAS.
  15. E. L. Eliel, K. D. Hargrove, K. M. Pietrusiewicz and M. Manoharan, J. Am. Chem. Soc., 1982, 104, 3635 CrossRef CAS.
  16. P.-S. Chu and N. S. True, J. Phys. Chem., 1985, 89, 2625 CrossRef CAS.
  17. R. J. Abraham, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1997, 31 RSC.
  18. (a) R. J. Abraham, L. Griffiths and M. A. Warne, J. Chem. Soc., Perkin Trans. 2, 1997, 203 RSC; (b) ibid., 1997, 881 Search PubMed; (c) ibid., 1997, 2151 Search PubMed.
  19. R. J. Abraham and N. J. Ainger, unpublished results.
  20. Bruker UXNMR version 010892, Bruker Meβtechnik GmbH, NMR Software Development, Silbersteifen, D-7512 Rheinstetten, Germany.
  21. GAUSSIAN94, Gaussian Inc., Pittsburgh, PA, USA, 1994. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople.
  22. M. A. Warne, Ph.D. Thesis, University of Liverpool, 1997.
  23. S. M. Castello and A. A. Bothner-By, J. Chem. Phys., 1967, 41, 3863 CrossRef CAS.
  24. (a) R. J. Abraham, J. Chem. Soc., 1965, 226 Search PubMed; (b) R. J. Abraham, Analysis of High Resolution NMR Spectra, Elsevier, Amsterdam, 1971 Search PubMed.
  25. W.-G. Liu, J. J. Steffens, A. Goswami and J. P. N. Rosazza, J. Org. Chem., 1993, 58, 6329 CrossRef CAS.
  26. J. W. Emsley, J. Feeney and L. H. Sutcliffe, High Resolution NMR Spectroscopy, Pergamon Press, Oxford, 1966, vol. 2, Appendix B Search PubMed.
  27. C. J. Puchert and J. Behnke, Aldrich Library of 13C and 1H FT NMR Spectra, Aldrich Chemical Company Inc., Milwaukee, WI, USA, 1993 Search PubMed.
  28. N. F. Bhacca, Varian NMR Spectra Catalogue, Varian Associates, Paco Alto, CA, USA, 1962 Search PubMed.
  29. R. J. Abraham, E. J. Chambers and W. A. Thomas, Magn. Reson. Chem., 1992, 30, S60 CAS.
  30. PCModel version 5, Serena Software Ltd., PO Box 3076, Bloomington, IN, USA, 1994.
  31. R. J. Abraham, J. Fisher and P. Loftus, Introduction to NMR Spectroscopy, Wiley, New York, pp. 42–46 Search PubMed.
  32. Y. Nishida, H. Ohrui and H. Meguro, Tetrahedron Lett., 1984, 25, 1575 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.