On the disappearance of the gem-dimethyl effect: the base-catalysed cyclization of ethyl hydantoates[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Ergun Atay, Iva B. Blagoeva, Anthony J. Kirby and Ivan G. Pojarlieff


Abstract

Buffer catalysis and solvent kinetic isotope effects in the cyclization of methyl-substituted ethyl hydantoates with ω-N-methyl (MUE) and ω-N-phenyl groups (PUE) have been studied in an attempt to elucidate the changes in mechanism and eventual reversal of relative reactivities caused by increasing the number of substituent methyl groups (the gem-dimethyl effect). (Rate constants for the hydroxide-catalysed cyclization are actually reduced on going to the fully methylated compounds.) For catalysis by hydroxide inverse isotope effects are generally consistent with specific base-catalysed cyclization, but the cyclizations of the most heavily substituted compounds show normal isotope effects, indicating a change of mechanism. It is suggested that proton transfer to the ethoxide leaving group is slowed by steric hindrance, and becomes rate determining for the most substituted compounds 3. Eclipsing strain in the tetrahedral intermediate may also be involved. The Brönsted plots for general base catalysis show distinctly different slopes of 0.2 for MUE and 0.6 for PUE, respectively. These are assigned to hydrogen bond preassociation and concerted catalysis mechanisms, of the attack of the ureido group nitrogen on the ester group. Rate constants for the reaction of the substrate anion would fall in the region of 1010 s–1 for esters 3 if the gem-dimethyl effect were fully expressed.


References

  1. J. R. Knowles, Ann. R. Biochem., 1989, 58, 195 Search PubMed.
  2. I. B. Blagoeva, I. G. Pojarlieff and A. J. Kirby, J. Chem. Soc., Perkin Trans. 2, 1984, 745 RSC.
  3. H. Slebocka-Tilk, A. J. Bennet, J. W. Keillor, R. S. Brown, J. Peter Guthrie and A. Jodhan, J. Am. Chem. Soc., 1990, 112, 8507 CrossRef CAS.
  4. I. B. Blagoeva, J. Chem. Soc., Perkin Trans. 2, 1987, 127 RSC.
  5. I. B. Blagoeva and I. G. Pojarlieff, CR. Acad. Bulg. Sci., 1977, 30, 1043 Search PubMed; M. Bergon and J.-P. Calmon, J. Chem. Soc., Perkin Trans. 2, 1978, 493 RSC.
  6. A. H. Koedjikov, I. B. Blagoeva, I. G. Pojarlieff and A. J. Kirby, J. Chem. Soc., Perkin Trans. 2, 1996, 2479 RSC.
  7. I. B. Blagoeva, D. T. Tashev and A. J. Kirby, J. Chem. Soc., Perkin Trans. 1, 1989, 1157 RSC.
  8. I. G. Pojarlieff, I. B. Blagoeva, A. J. Kirby, B. P. Mikhova and E. Atay, J. Chem. Res. (S), 1997, 220 RSC.
  9. I. B. Blagoeva, I. G. Pojarlieff, D. T. Tashev and A. J. Kirby, J. Chem. Soc., Perkin Trans. 2, 1989, 347 RSC.
  10. H. Biltz and K. Slotta, J. Prakt. Chem., 1926, 113, 233 CAS.
  11. L. Cuneo, Ber., 1892, 25, 328 Search PubMed.
  12. E. Friedman, Beitr. Chem. Physiol. Pathol., 1906, 11, 184 Search PubMed.
  13. A. K. Covington, R. A. Robinson and R. G. Bates, J. Phys. Chem., 1966, 70, 3820 CAS; J. C. Fishbein and W. P. Jencks, J. Am. Chem. Soc., 1988, 110, 5075 CrossRef CAS.
  14. J. Kavalek, V. Machacek, G. Svobodova and V. Sterba, Collect. Czech. Chem. Commun., 1986, 51, 375 CAS.
  15. I. B. Blagoeva, I. G. Pojarlieff and V. Dimitrov, J. Chem. Soc., Perkin Trans. 2, 1978, 887 RSC.
  16. N. Gravitz and W. P. Jencks, J. Am. Chem. Soc., 1974, 96, 489 CrossRef CAS.
  17. O. Nunez, J. Rodrigues and L. Angulo, J. Phys. Org. Chem., 1993, 7, 80.
  18. R. L. Schowen, Prog. Phys. Org. Chem., 1972, 9, 275 Search PubMed; K. B. J. Schowen in Transition States of Biochemical Processes, eds. R. D. Gandour and R. L. Schowen, Plenum Press, New York, 1978, p. 225 Search PubMed.
  19. D. M. Quinn and L. D. Sutton in Enzyme Mechanism from Isotope Effects, ed. P. F. Cook, CRC Press, Boca Raton, 1991; quoted from ref. 16, p. 257 Search PubMed.
  20. F. Hibbert, Adv. Phys. Org. Chem., 1986, 22, 113 CAS.
  21. A. Awwal and F. Hibbert, J. Chem. Soc., Perkin Trans. 2, 1977, 1589 RSC; F. Hibbert and K. P. P. Hunte, J. Chem. Soc., Perkin Trans. 2, 1983, 1895 RSC.
  22. C. F. Bernasconi and D. J. Carre, J. Am. Chem. Soc., 1979, 101, 2707 CrossRef CAS.
  23. C. L. Perrin and T. J. Dwyer, J. Am. Chem. Soc., 1987, 109, 5163 CrossRef CAS.
  24. E. Anderson and T. H. Fife, J. Am. Chem. Soc., 1971, 93, 1701 CrossRef.
  25. L. R. Mahoney, G. D. Mendenhall and K. U. Ingold, J. Am. Chem. Soc., 1973, 95, 8610 CrossRef CAS.
  26. A. J. Kirby, Adv. Phys. Org. Chem., 1980, 17, 183 CAS.
  27. M. I. Page and A. Williams, Organic & Bio-organic Mechanisms, Longman, London, 1997, p. 178 Search PubMed.
  28. H. Fischer, F. X. DeCandis, S. D. Ogden and W. P. Jencks, J. Am. Chem. Soc., 1980, 102, 1340.
  29. W. P. Jencks, Chem. Rev., 1972, 72, 702.
  30. R. A. More O'Ferrall, J. Chem. Soc., B, 1970, 274 RSC.
  31. M. Oki, Applications of Dynamic NMR Spectroscopy to Organic Chemistry, Methods in Stereochemical Analysis, vol. 4, VCH Publishers, Florida, 1985, p. 55 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.