Electronic structure of the naphthalene radical cation and some simple alkylated derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Thomas Bally, Claudio Carra, Markus P. Fülscher and Zhendong Zhu


Abstract

The excited states of the radical cations of naphthalene (N), dihydroacenaphthylene (A) and pyracene (P) are probed experimentally by photoelectron (PE) and by electronic absorption (EA) spectroscopy. Their electronic structure is discussed in some detail on the basis of ab initio CASSCF/CASPT2 calculations which yield a description in good accord with experiment, both with regard to band positions and intensities. For example, they help to explain why a prominent band in the EA spectrum of N˙+ is absent in the spectra of A˙+ and P˙+. This is not due to a spectral shift induced by the alkyl bridges, but rather to a cancellation of transition dipole moments that is only partial in N˙+ but more complete in the two derivatives. It is found that—in spite of the relatively small relaxation energies of the vertically formed radical cations—the accompanying geometry changes on ionization may lead to quite substantial shifts in some of the excited state energies, notably that of the first (unobserved) one. Therefore, the common assumption that the good correlation between the PE spectra of polycyclic aromatic hydrocarbons and the EA spectra of their radical cations is due to the rigidity of these compounds is not well founded.


References

  1. F. Salama and L. J. Allamandola, Adv. Space Res., 1994, 15, 413 CrossRef CAS.
  2. F. Brogli, E. Heilbronner and T. Kobayashi, Helv. Chim. Acta, 1972, 55, 274 CAS.
  3. R. C. Dunbar and R. Klein, J. Am. Chem. Soc., 1976, 98, 7994 CrossRef CAS.
  4. Y.-P. Hi, Y.-C. Yang, S. J. Klippenstein and R. C. Dunbar, J. Phys. Chem., 1995, 99, 12 115 CrossRef.
  5. M. C. R. Cockett, H. Ozeki, K. Okuyama and K. Kimura, J. Chem. Phys., 1993, 98, 7763 CrossRef CAS.
  6. R. Erickson, N. P. Benetis, A. Lund and M. Lindgren, J. Phys. Chem. A, 1997, 101, 2390 CrossRef CAS.
  7. T. Shida, Electronic Absorption Spectra of Organic Radical Ions, Elsevier, Amsterdam, 1988 Search PubMed.
  8. R. Gschwind and E. Haselbach, Helv. Chim. Acta, 1979, 62, 941 CAS.
  9. L. Andrews, B. J. Kelsall and T. A. Blankenship, J. Phys. Chem., 1982, 86, 2916 CrossRef CAS.
  10. F. Salama and L. J. Allamandola, J. Chem. Phys., 1991, 94, 6964 CrossRef CAS.
  11. J. Szczepanski, D. Roser, W. Personette, M. Eyring, R. Pellow and M. Vala, J. Phys. Chem., 1992, 96, 7876 CrossRef CAS.
  12. D. M. Hudgins, S. A. Sandford and L. J. Allamandola, J. Phys. Chem., 1994, 98, 4243 CrossRef CAS.
  13. P. Jorgensen and J. C. Poulsen, J. Phys. Chem., 1974, 78, 1420 CrossRef.
  14. R. Zahradnìk, P. Carsky and Z. Slanina, Collect. Czech. Chem. Commun., 1973, 38, 1886 CAS.
  15. P. Du, F. Salama and G. H. Loew, Chem. Phys., 1993, 173, 421 CrossRef CAS.
  16. C. Niederalt, S. Grimme and S. D. Peyerimhoff, Chem. Phys. Lett., 1995, 245, 455 CrossRef CAS.
  17. B. O. Roos, K. Andersson, M. P. Fülscher, P.-Å. Malmqvist and L. Serrano-Andrés, Adv. Chem. Phys., 1996, 93, 219 CAS.
  18. B. O. Roos, M. P. Fülscher, P.-Å. Malmqvist, M. Merchàn and L. Serrano-Andrés, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, ed. S. R. Langhoff, Kluwer, Dordrecht, 1994 Search PubMed.
  19. M. P. Fülscher, S. Matzinger and T. Bally, Chem. Phys. Lett., 1995, 236, 167 CrossRef.
  20. L. Truttmann, K. R. Asmis and T. Bally, J. Phys. Chem., 1995, 99, 17 844 CrossRef CAS.
  21. T. Bally, in Radical Ionic Systems (Topics in Molecular Organization and Engineering), eds. A. Lund and M. Shiotani, Kluwer, Dordrecht, 1991, vol. 6, pp. 3–54 Search PubMed.
  22. R. Dressler, L. Neuhaus and M. Allan, J. Electron Spectrosc. Relat. Phenom., 1983, 31, 181 CrossRef CAS.
  23. B. G. Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys., 1993, 98, 5612 CrossRef CAS.
  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Repogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. DeFrees, J. Baker, J. P. Stewart, M. Head-Gordon, M. C. Gonzales and J. A. Pople, Gaussian Program, GAUSSIAN94, Rev. B1 and D4; Gaussian, Inc., Pittsburgh, PA, 1995.
  25. K. Andersson and B. O. Roos, in Modern Electronic Structure Theory, Part I (Advanced Series in Physical Chemistry), ed. D. R. Yarkony, Word Scientific, Singapore, 1995, vol. 2, p. 55 Search PubMed.
  26. K. Andersson, M. R. A. Blomberg, M. P. Fülscher, V. Kellö, R. Lindh, P.-Å. Malmqvist, J. Noga, J. Olson, B. O. Roos, A. Sadlej, P. E. M. Siegbahn, M. Urban and P.-O. Widmark, MOLCAS, 3rd edn., University of Lund, Sweden, 1994.
  27. P.-O. Widmark, P.-Å. Malmqvist and B. O. Roos, Theor. Chim. Acta, 1990, 77, 291 CAS.
  28. Note that this does not imply that the radical cations do not change their energy on relaxing from the neutral to the cation geometry. In fact, both B3LYP and CASPT2 calculations agree that this relaxation energy amounts to about 0.1 eV (all energies available in the supporting information).
  29. T. Koopmans, Physica, 1934, 7, 104 Search PubMed.
  30. G. J. Hoijtink, N. H. Verlhorst and P. J. Zandstra, Mol. Phys., 1960, 3, 533 CAS.
  31. A. Hinchcliffe, J. N. Murrell and N. Trinajstic, Trans. Faraday Soc., 1966, 62, 1362 RSC.
  32. A. Ishitani and S. Nagakura, Theor. Chim. Acta, 1966, 4, 236 CAS.
  33. A. D. McLachlan, Mol. Phys., 1959, 2, 271 CAS.
  34. H. M. Chang, H. H. Jaffe and C. A. Masmanides, J. Phys. Chem., 1975, 79, 1118 CrossRef CAS.
  35. M. C. Zerner and J. E. Ridley, Theor. Chim. Acta, 1973, 32, 111 CrossRef CAS.
  36. T. Bally, S. Nitsche, K. Roth and E. Haselbach, J. Am. Chem. Soc., 1984, 106, 3927 CrossRef CAS.
  37. R. Zahradnik and P. Carsky, J. Phys. Chem., 1970, 74, 1235 CrossRef CAS.
  38. E. Heilbronner, T. Hoshi, J. L. v. Rosenberg and K. Hafner, Nouv. J. Chim., 1976, 1, 105 Search PubMed.
  39. A. C. Buchanan, R. Livingston, A. S. Dworkin and G. P. Smith, J. Phys. Chem., 1980, 84, 423 CrossRef CAS.
  40. A. Terahara, H. Ohya-Nishigushi, N. Hirota and A. Oku, J. Phys. Chem., 1986, 90, 1564 CrossRef CAS.
  41. A. G. Davies and D. C. McGuchan, Organometallics, 1991, 10, 329 CrossRef CAS.
  42. L. Andrews, R. S. Friedman and B. J. Kelsall, J. Phys. Chem., 1985, 89, 4550 CrossRef CAS.
  43. Note that the phases of one of the MOs that are involved in these excitations could have been chosen differently, such that the transition moments are oriented parallel. However, this would necessarily have entailed a change in sign of one of the two CI-coefficients such that the net result would remain unaffected by this (arbitrary) phase change.
  44. Z. Zhu, T. Bally, J. Wirz and M. Fülscher, J. Chem. Soc., Perkin Trans. 2, 1998, 1083 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.