Concentrated salt effects on the rates of solvolyses involving carbocations as reaction intermediates in acetone–water mixed solvents

(Note: The full text of this document is currently only available in the PDF Version )

Ludovick C. Manege, Tadaharu Ueda, Masashi Hojo and Mizue Fujio


Abstract

Extensive studies have been carried out on the concentrated salt effects on the solvolysis reaction rates of aliphatic halides and related compounds (RX) in acetone–water mixed solvents. In 90 vol% acetone– 10 vol% water solution, the pseudo-first-order rate constant (k/s–1) of a typical SN1 substrate, tert-butyl chloride, at 50 °C was increased exponentially by the addition of M+ClO4 (M+ = Li+, Na+: up to 4.0 mol dm–3) and M2+(ClO4)2 (M2+ = Mg2+, Ba2+: up to 2.0 mol dm–3); the extent of the cation effects increased as Na+ ⩽[hair space][hair space]⩽ Li+ < Mg2+ ⩽[hair space][hair space]⩽ Ba2+. However, the addition of Et4NClO4 (up to 1.0 mol dm–3) decreased the solvolysis rate substantially. In 50 vol% acetone–water solution, the effects of the metal perchlorates on the solvolysis rates of 1-adamantyl chloride at 50 °C increased as Na+ < Li+ < Ba2+ < Mg2+. Addition of >1.0 mol dm–3 Et4NBr decreased the solvolysis rate markedly, whereas it was increased slightly by lower Et4NBr concentrations. The positive effects of metal ions for typical SN1 substrates were explained by the change of solvent structure and by a “chemical” interaction between the anions from the substrates (R+–X) and M+ or M2+ in the presence of very concentrated salts; the negative effects of nonmetallic salts should have been brought about by the decrease in activity of H2O. The solvolysis rate of 2-adamantyl tosylate (C10H15OTs) in 50 vol% acetone–water solution at 50 °C was also increased exponentially by the addition of LiClO4, whereas those of typical SN2 substrates, methyl tosylate (CH3OTs) and ethyl bromide, were decreased by the addition of LiClO4. On the other hand, for isopropyl bromide and benzyl chloride, the solvolysis rates were not changed by the addition of LiClO4. A good linearity was observed between the increase in log (k/s–1) in the presence of 1.0 mol dm–3 LiClO4 and the m-values of the substrates (by Grunwald–Winstein). It is proposed that one could simply distinguish SN1 from SN2 reactions merely by observing a substantial increase in the solvolysis rate constant at 1.0 mol dm–3 LiClO4 in aqueous mixed solvents. The salt effects on the solvolysis rates of sulfonyl chlorides in 50% acetone–water at 35 °C were very different from those for substrates with carbocations as reaction intermediates.


References

  1. J. E. Gordon, in The Organic Chemistry of Electrolyte Solutions, Wiley, New York, 1975 Search PubMed; Ions and Ion Pairs in Organic Reactions, ed. M. Szwarc, Wiley-Interscience, New York, 1972, vol. 1; 1974, vol. 2 Search PubMed; Advances in Physical Organic Chemistry, ed. V. Gold and D. Bethell, Academic, London, 1977, vol. 14 Search PubMed; A. Loupy and B. Tchoubar, in Salt Effects in Organic and Organometallic Chemistry, VCH, Weinheim, 1992 Search PubMed; Organic Reaction Mechanisms 1994, ed. A. C. Knipe and W. E. Watts, Wiley, Chichester, 1994 Search PubMed.
  2. L. C. Manege, T. Ueda and M. Hojo, Bull. Chem. Soc. Jpn., 1988, 71, 589.
  3. R. Snaith and D. S. Wright, in Lithium Chemistry, ed. A.-M. Sapse and P. v. R. Schleyer, Wiley, New York, 1995, ch. 8 Search PubMed.
  4. M. Hojo, H. Hasegawa and H. Yoneda, J. Chem. Soc., Perkin Trans. 2, 1994, 1855 RSC; M. Hojo, H. Hasegawa, A. Mizobe, Y. Ohkawa and Y. Miimi, J. Phys. Chem., 1995, 99, 16 609 CrossRef CAS; M. Hojo, H. Hasegawa and H. Yoneda, Bull. Chem. Soc. Jpn., 1996, 69, 971 CAS.
  5. M. Hojo, T. Ueda, L. C. Manege and M. Yamasaki, 7th Kyushu International Symposium on Physical Organic Chemistry (KISPOC-VII), Fukuoka, Dec. 1997, Abstr. No. P12 Search PubMed; M. Hojo, H. Hasegawa, H. Tsurui, K. Kawamura, S. Minami and A. Mizobe, Bull. Chem. Soc. Jpn., 1998, 71, 1619 Search PubMed.
  6. M. Hojo, T. Ueda, M. Nishimura, M. Matsui and S. Umetani, unpublished results.
  7. M. Fujio, M. Goto, T. Yoshino, K. Funatsu, Y. Tsuji, S. Ouchi and Y. Tsuno, Mem. Fac. Sci. Kyushu Univ., Ser. C, 1987, 16, 85 Search PubMed.
  8. D. J. Raber, R. C. Bingham, J. M. Harris, J. L. Fry and P. v. R. Schleyer, J. Am. Chem. Soc., 1970, 92, 9577.
  9. A. H. Fainberg and S. Winstein, J. Am. Chem. Soc., 1956, 78, 2770 CrossRef CAS.
  10. M. Hojo, H. Nagai, M. Hagiwara and Y. Imai, Anal. Chem., 1987, 59, 1770 CrossRef CAS.
  11. E. H. Oelkers and H. C. Helgeson, Science, 1993, 261, 888 CAS.
  12. T. W. Bentley and G. E. Carter, J. Am. Chem. Soc., 1982, 104, 5741 CrossRef CAS.
  13. J. L. Fry, C. J. Lancelot, L. K. M. Lam, J. M. Harris, R. C. Bingham, D. J. Raber, R. E. Hall and P. v. R. Schleyer, J. Am. Chem. Soc., 1970, 92, 2538 CrossRef CAS.
  14. T. W. Bentley and P. v. R. Schleyer, J. Am. Chem. Soc., 1976, 98, 7658 CrossRef CAS.
  15. S. Winstein, E. Clippinger, A. H. Fainberg and G. C. Robinson, J. Am. Chem. Soc., 1954, 76, 2597 CrossRef CAS; S. Winstein, P. E. Klinedinst, Jr. and G. C. Robinson, J. Am. Chem. Soc., 1961, 83, 885 CrossRef CAS.
  16. M. Hojo, H. Hasegawa, Y. Miyauchi, H. Moriyama, H. Yoneda and S. Arisawa, Electrochim. Acta, 1994, 39, 629 CrossRef CAS.
  17. B. G. Cox and H. Maskill, J. Chem. Soc., Perkin Trans. 2, 1983, 1901 RSC.
  18. P. A. H. Wyatt and Z. M. Zochowski, J. Chem. Res. (S), 1977, 252 Search PubMed; M. J. Postle and P. A. H. Wyatt, J. Chem. Soc., Perkin Trans. 2, 1972, 474 RSC.
  19. M. Hojo and H. Hamada, unpublished results.
  20. J. I. Brauman and W. C. Archie, Jr., J. Am. Chem. Soc., 1970, 92, 5981 CrossRef CAS.
  21. M. Oki, H. Ikeda and S. Toyota, Bull. Chem. Soc. Jpn., 1998, 71, 749 CAS.
  22. M. Fujio, H. Morimoto, H.-J. Kim and Y. Tsuno, Bull. Chem. Soc. Jpn., 1997, 70, 1403; 3081 CAS.
  23. C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithaca, 2nd edn., 1969 Search PubMed.
  24. T. W. Bentley, F. L. Schadt and P. v. R. Schleyer, J. Am. Chem. Soc., 1972, 94, 992 CrossRef CAS.
  25. S. Winstein, E. Grunwald and H. W. Jones, J. Am. Chem. Soc., 1951, 73, 2700 CrossRef CAS.
  26. S. Winstein, A. H. Fainberg and E. Grunwald, J. Am. Chem. Soc., 1957, 79, 4146 CrossRef CAS.
  27. R. M. Forbes and H. Maskill, J. Chem. Soc., Chem. Commun., 1991, 854 RSC; I. M. Gordon and H. Maskill, Chem. Soc. Rev., 1989, 18, 123 RSC; I. S. Koo, T. W. Bentley, D. H. Kang and I. Lee, J. Chem. Soc., Perkin Trans. 2, 1991, 175 RSC.
  28. O. Rogne, J. Chem. Soc., B, 1969, 663 RSC.
  29. C. A. Bunton and L. Robinson, J. Am. Chem. Soc., 1968, 90, 5965 CrossRef CAS.
  30. C. G. Swain and C. B. Scott, J. Am. Chem. Soc., 1953, 75, 141 CrossRef CAS.
  31. I. Lee and S. C. Kim, J. Korean Chem. Soc., 1973, 17, 406 Search PubMed cf. W. J. Spillane, F. A. McHugh and P. O. Burke, J. Chem. Soc., Perkin Trans. 2, 1998, 13 Search PubMed.
  32. L. Menninga and J. B. F. N. Engberts, J. Phys. Chem., 1973, 77, 1271 CrossRef CAS.
  33. M. L. Chabinyc, S. L. Craig, C. K. Regan and J. I. Brauman, Science, 1998, 279, 1882 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.