Solvent effects on the stability of simple secondary amides[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Kathleen M. Morgan and Daniel A. Kopp


Abstract

Enthalpies of solution for N-methylpropionamide and 2-pyrrolidone in water, propan-1-ol, acetone and toluene were measured by calorimetry. Heats of vaporization were determined for the amides by ebulliometry, and enthalpies of solvation from gas phase were obtained. Enthalpies of solvation were the same for the two nearly-isomeric amides in polar, protic solvents, but in acetone and toluene dimerization of 2-pyrrolidone caused differences in enthalpies of solvation. For N-methylpropionamide, solvation enthalpy from the gas phase is highly correlated with the ability of the solvent to donate hydrogen bonds, but not well correlated with the ability of the solvent to accept hydrogen bonds, the polarity/polarizability of the solvent, or solvent relative permittivity.


References

  1. K. B. Wiberg and K. E. Laidig, J. Am. Chem. Soc., 1987, 109, 5935 CrossRef CAS; C. L. Perrin, J. Am. Chem. Soc., 1991, 113, 2865 CrossRef CAS; Q.-P. Wang, A. J. Bennet, R. S. Brown and B. D. Santarsiero, J. Am. Chem. Soc., 1991, 113, 5757 CrossRef CAS; K. B. Wiberg and C. M. Breneman, J. Am. Chem. Soc., 1992, 114, 831 CrossRef CAS; K. B. Wiberg, C. M. Hadad, P. R. Rablen and J. Cioslowski, J. Am. Chem. Soc., 1992, 114, 8644 CrossRef CAS; K. B. Wiberg and P. R. Rablen, J. Am. Chem. Soc., 1993, 115, 9234 CrossRef CAS; A. Greenberg, D. T. Moore and T. D. DuBois, J. Am. Chem. Soc., 1996, 118, 8658 CrossRef CAS; D. Lauvergnat and P. C. Hiberty, J. Am. Chem. Soc., 1997, 119, 9478 CrossRef CAS; E. D. Glendening and J. A. Hrabal, II, J. Am. Chem. Soc., 1997, 119, 12940 CrossRef CAS.
  2. L. A. LaPlanche and M. T. Rogers, J. Am. Chem. Soc., 1964, 86, 337 CrossRef CAS.
  3. W. E. Stewart and T. H. Siddall, III, Chem. Rev., 1970, 70, 517 CrossRef.
  4. A. Radzicka, L. Pedersen and R. Wolfenden, Biochemistry, 1988, 27, 4538 CrossRef CAS.
  5. T. Drakenberg and S. Forsén, J. Chem. Soc., Chem. Commun., 1971, 1404 RSC.
  6. D. M. Pawar, A. A. Khalil, D. R. Hooks, K. Collins, T. Elliott, J. Stafford, L. Smith and E. A. Noe, J. Am. Chem. Soc., 1998, 120, 2108 CrossRef CAS.
  7. For example, T. Drakenberg, K.-I. Dahlqvist and S. Forsén, J. Phys. Chem., 1972, 76, 2178 Search PubMed; C. B. LeMaster and N. S. True, J. Phys. Chem., 1989, 93, 1307 CrossRef CAS; K. B. Wiberg, P. R. Rablen, D. J. Rush and T. A. Keith, J. Am. Chem. Soc., 1995, 117, 4261 CrossRef CAS and references cited therein.
  8. P. Li, X. G. Chen, E. Shulin and S. A. Asher, J. Am. Chem. Soc., 1997, 119, 1116 CrossRef CAS.
  9. K. B. Wiberg and M. M. Marquez, J. Am. Chem. Soc., 1994, 116, 2197 CrossRef CAS.
  10. G. Pilcher, in Supplement B: The Chemistry of Acid Derivatives, ed. S. Patai, Wiley, New York, 1992, vol. 2, ch. 2 Search PubMed.
  11. R. M. Meighan and R. H. Cole, J. Phys. Chem., 1964, 68, 503 CAS.
  12. G. Fischer, Angew. Chem., Int. Ed. Engl., 1994, 33, 1415 CrossRef.
  13. M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877 CrossRef CAS.
  14. Y. Marcus, Chem. Soc. Rev., 1993, 22, 409 RSC.
  15. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd edn., VCH, New York, 1988, ch. 7 Search PubMed; K. Dimroth, C. Reichardt, T. Siepmann and F. Bohlmann, Liebigs Ann. Chem., 1963, 661, 1 Search PubMed; C. Reichardt, Liebigs Ann. Chem., 1971, 752, 64 Search PubMed.
  16. M. R. J. Dack, Chem. Soc. Rev., 1975, 4, 211 RSC.
  17. K. B. Wiberg and R. R. Squires, J. Chem. Thermodyn., 1979, 11, 773 CAS; E. J. Martin, Ph. D. Thesis, Yale University, 1984, chs. 2 and 3; L. S. Crocker, Ph. D. Thesis, Yale University, 1989, ch. 2.
  18. J. Konicek and I. Wadsö, Acta Chem. Scand., 1971, 25, 1541 CAS.
  19. R. B. Homer and C. D. Johnson, in The Chemistry of Amides, ed. J. Zabicky, Interscience Publishers, New York, 1970, ch. 3 Search PubMed.
  20. S. E. Krikorian, J. Phys. Chem., 1982, 86, 1875 CrossRef CAS.
  21. H. E. Affsprung, S. D. Christian and J. D. Worley, Spectrochim. Acta, 1964, 20, 1414.
  22. J.-S. Chen, J. Chem. Soc., Faraday Trans., 1994, 90, 717 RSC.
  23. P. Starzewski, I. Wadsö and W. Zielenkiewicz, J. Chem. Thermodyn., 1984, 16, 331 CAS.
  24. W. L. Jorgensen and J. Gao, J. Am. Chem. Soc., 1988, 110, 4212 CrossRef.
  25. P. Cieplak and P. Kollman, J. Comput. Chem., 1991, 12, 1232 CAS.
  26. S. W. Rick and B. J. Berne, J. Am. Chem. Soc., 1996, 118, 672 CrossRef CAS; D. J. Tannor, B. Barten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W. A. Goddard, III and B. Honig, J. Am. Chem. Soc., 1994, 116, 11875 CrossRef CAS.
  27. D. A. Dixon, K. D. Dobbs and J. J. Valentini, J. Phys. Chem., 1994, 98, 13435 CrossRef CAS.
  28. R. Wolfenden, Biochemistry, 1978, 17, 201 CrossRef CAS.
  29. Y. Wang, R. Purrelle, S. Georgiou and T. G. Spiro, J. Am. Chem. Soc., 1991, 113, 6368 CrossRef CAS.
  30. J. Gao and M. Freindorf, J. Phys. Chem. A, 1997, 101, 3182 CrossRef CAS.
  31. C. Suarez, C. B. LeMaster, C. L. LeMaster, M. Tafazzoli and N. S. True, J. Phys. Chem., 1990, 94, 6679 CrossRef CAS and references therein.
  32. Ampoule technique is described in detail by Crocker (ref. 17). To seal the ampoule, the sample within is frozen in liquid nitrogen, and the upper part of the ampoule is heated with a heat gun to remove any sample that could otherwise char during sealing. A gas/oxygen torch is used to cleanly seal the ampoule at the constriction. The ampoule is held so that the glass naturally separates, without the formation of a long glass fiber which would complicate determination of the sample mass were the fiber to break. The sealed ampoule and stem are weighed, and the mass of the sample is determined by difference. In the data analysis, a buoyancy correction is made because the empty ampoule is weighed in air while the ampoule containing sample is evacuated.
  33. F. D. Rossini, “Assignment of Uncertainties to Thermochemical Data” in Experimental Thermochemistry, ed. F. D. Rossini, Interscience, New York, 1956 Search PubMed.
  34. K. M. Morgan, Ph. D. Thesis, Yale University, 1994, ch. 5; S. R. Hoover, H. John and E. F. Mellon, Anal. Chem., 1953, 25, 1940 Search PubMed; G. W. Thomson, in Techniques in Organic Chemistry, Volume 1, Part 1. Physical Methods in Organic Chemistry, 3rd edn., ed. A. Weissberger, Interscience Publishers, Inc., New York, 1959, ch. IX CrossRef CAS.
  35. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn., Gaussian, Inc., Pittsburgh, 1995–1996, ch. 4 Search PubMed; C. W. Bauschlicher, Jr. and H. Partridge, J. Chem. Phys., 1995, 103, 1788 Search PubMed.
  36. E. S. Domalski and E. D. Hearing, “Condensed Phase Heat Capacity Data” in NIST Standard Reference Database Number 69, eds. W. G. Mallard and P. J. Linstrom, August 1997, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov) Search PubMed.
  37. R. C. Reid, J. M. Prausnitz and T. K. Sherwood, The Properties of Gases and Liquids, 3rd edn., McGraw-Hill Book Company, New York, 1977, ch. 5 Search PubMed; C. F. Chueh and A. Swanson, Chem. Eng. Progr., 1973, 69, 83 Search PubMed; A. C. Swanson, Can. J. Chem. Eng., 1973, 51, 596 Search PubMed.
  38. Gaussian 94 (Revision D.4), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
  39. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn., Gaussian, Inc., Pittsburgh, 1995–1996, ch. 5 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.