On the thermodynamics of peptide oxidation: anhydrides of glycine and alanine[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Mats Jonsson, Danial D. M. Wayner, David A. Armstrong, Dake Yu and Arvi Rauk


Abstract

The α-amino C–H bond dissociation enthalpies of glycine anhydride and alanine anhydride and the C–O bond dissociation enthalpies of the corresponding anhydride peroxyl radicals have been measured by photoacoustic calorimetry in aqueous solution. Furthermore, the one-electron oxidation potentials of the C-centered radicals formed upon hydrogen abstraction from glycine anhydride and alanine anhydride have been measured by photomodulation voltammetry in aqueous solution. In addition, the C–H bond dissociation enthalpies of glycine anhydride and alanine anhydride and one-electron reduction potentials of the corresponding radicals have been calculated by ab initio methods [at the B3LYP/6-31G(D) level]. The resulting experimental gas-phase C–H bond dissociation enthalpies are 340 and 325 ± 15 kJ mol–1, the C–O bond dissociation enthalpies are 56 and 64 ± 15 kJ mol–1 and the one-electron oxidation potentials are 0.175 and 0.086 V vs. NHE for the glycine anhydride and alanine anhydride related species, respectively. The calculated C–H bond dissociation enthalpies are 351.1, 334.7 and 332.7 ± 10 kJ mol–1 for glycine anhydride, L-alanine anhydride and D,L-alanine anhydride, respectively. The one-electron reduction potentials of the corresponding radicals are 1.19, 1.00 and 0.99 V vs. NHE. The thermochemical properties of amino acid anhydrides and the corresponding C-centered radicals and peroxyl radicals determined in this work are consistent with each other and with previously published observations on the radical chemistry of amino acid anhydrides and related species.


References

  1. Issued as NRCC Publication No. 40 876.
  2. E. R. Stadman, Annu. Rev. Biochem., 1993, 62, 797 CrossRef CAS.
  3. R. Zhao, J. Lind, G. Merényi and T. E. Eriksen, J. Am. Chem. Soc., 1994, 116, 12 010 CrossRef CAS.
  4. R. Zhao, J. Lind, G. Merényi and T. E. Eriksen, J. Chem. Soc., Perkin Trans. 2, 1997, 569 RSC.
  5. D. Yu, D. A. Armstrong and A. Rauk, Can. J. Chem., 1992, 70, 1762 CAS.
  6. D. Yu, A. Rauk and D. A. Armstrong, J. Am. Chem. Soc., 1995, 117, 1789 CrossRef CAS.
  7. D. A. Armstrong, A. Rauk and D. Yu, J. Chem. Soc., Perkin Trans. 2, 1995, 553 RSC.
  8. D. A. Armstrong, A. Rauk and D. Yu, Can. J. Chem., 1996, 74, 1192 CAS.
  9. A. Rauk, D. Yu and D. A. Armstrong, J. Am. Chem. Soc., 1997, 119, 208 CrossRef CAS.
  10. J. J. Brocks, F. M. Wells, H.-D. Beckhaus and C. Rüchardt, Tetrahedron Lett., 1997, 38, 7721 CrossRef CAS.
  11. O. J. Mieden and C. von Sonntag, Z. Naturforsch., 1989, 44b, 959 Search PubMed.
  12. O. J. Mieden and C. von Sonntag, J. Chem. Soc., Perkin Trans. 2, 1989, 2071 RSC.
  13. J. M. Kanabus-Kaminska, B. C. Gilbert and D. Griller, J. Am. Chem. Soc., 1989, 111, 3311 CrossRef CAS and references therein.
  14. D. D. M. Wayner, E. Lusztyk, D. Pagé, K. U. Ingold, P. Mulder, L. J. J. Laarhoven and H. S. Aldrich, J. Am. Chem. Soc., 1995, 117, 8737 CrossRef CAS.
  15. D. D. M. Wayner, J. J. Dannenberg and D. Griller, J. Am. Chem. Soc., 1985, 107, 7764 CrossRef CAS.
  16. L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer-Verlag, Berlin, 1987 Search PubMed.
  17. (a) M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, ( 1992)Gaussian 92, Revision B, Gaussian, Inc., Pittsburgh PA Search PubMed; (b) M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, (SGI-Revision B.3), 1995, Gaussian, Inc., Pittsburgh, PA Search PubMed.
  18. A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16 502 CrossRef CAS.
  19. D. A. McQuarrie, Statistical thermodynamics, Harper & Row, New York, 1973 Search PubMed.
  20. W. J. Hehre, R. Ditchfield, L. Radom and J. A. Pople, J. Am. Chem. Soc., 1970, 92, 4796 CrossRef CAS.
  21. M. Jonsson, unpublished results.
  22. J. Berkowitz, G. B. Ellison and D. Gutman, J. Phys. Chem., 1994, 98, 2744 CrossRef CAS.
  23. M. Jonsson, J. Phys. Chem., 1996, 100, 6814 CrossRef CAS and references therein.
  24. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, 2nd edn., 1989 and references therein Search PubMed.
  25. K. Daasbjerg and M. Jonsson, unpublished results.
  26. I. R. Slagle and D. Gutman, J. Am. Chem. Soc., 1985, 107, 5342 CrossRef CAS.
  27. J. J. Russell, J. A. Seetula, D. Gutman, F. Danis, F. Caralp, P. D. Lightfoot, R. Lesclaux, C. F. Melius and S. M. Senkan, J. Phys. Chem., 1990, 94, 3277 CrossRef CAS.
  28. X. Fang, X. Pan, A. Rahmann, H.-P. Schuchmann and C. von Sonntag, Chem. Eur. J., 1995, 1, 423 CAS.
  29. The C–H bond dissociation enthalpies for CH4(438.5 kJ mol–1) and CCl3H (392.5 kJ mol–1) were taken from ref. 24 and the C–H bond dissociation enthalpy for the phenylalanine derived hydroxycyclohexadiene was approximated with that of cyclohexa-1,4-diene (318 kJ mol–1, see ref. 30).
  30. W. Tsang, J. Phys. Chem., 1986, 90, 1152 CrossRef CAS.
  31. D. D. M. Wayner, D. J. McPhee and D. Griller, J. Am. Chem. Soc., 1988, 110, 132 CrossRef CAS.
  32. D. D. M. Wayner, J. J. Dannenberg and D. Griller, Chem. Phys. Lett., 1986, 131, 189 CrossRef CAS.
  33. P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18, 1637 CAS.
  34. W. C. Barrette, H. W. Jr. Johnson and D. T. Sawyer, Anal. Chem., 1984, 56, 1890 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.