Interplay of strong and weak hydrogen bonding in molecular complexes of some 4,4′-disubstituted biphenyls with urea, thiourea and water

(Note: The full text of this document is currently only available in the PDF Version )

Ram Thaimattam, D. Shekhar Reddy, Feng Xue, Thomas C. W. Mak, Ashwini Nangia and Gautam R. Desiraju


Abstract

The crystal chemistry and engineering of a new family of host–guest complexes is described. 4,4′-Dicyanobiphenyl (DCBP) forms a 1:1 complex, 1 with urea wherein the DCBP host forms large hexagonal channels via C–H· · ·N hydrogen bonds and the urea guest molecules are arranged in N–H· · ·O ribbons which fit completely within the host channels. By analogy, 4,4′-bipyridine N,N′-dioxide (BPNO) was selected as a molecule that can form a corresponding C-H· · ·O based channel. BPNO forms complexes with urea (2), thiourea (3) and water (4). Structures 2 and 3 provide some points of comparison with the structure of 1 but are not fully equivalent to it. In structure 4, the smaller guest water is able to fit neatly within the smaller hexagonal channel of BPNO and in this sense, the degree of structural predictability is satisfactory. To obtain another structure similar to that of 1, 4,4′-dinitrobiphenyl (DNBP) was identified as an alternative host compound. This choice was justified by the structure of its 1:1 complex, 5 with urea. In all cases, the guest molecules interact with each other via strong hydrogen bonds and form an essential template for the weak hydrogen bonded assembly of the host network structure but the latter is still of some significance. One finds consequently, in complexes 1-5, a constructive interplay of strong and weak hydrogen bonds.


References

  1. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam, 1989, pp. 115–173 Search PubMed; C. B. Aakeröy and K. R. Seddon, Chem. Soc. Rev., 1993, 397 Search PubMed; S. Subramanian and M. J. Zaworotko, Coord. Chem. Rev., 1994, 137, 357 RSC; J. R. Fredericks and A. D. Hamilton, in Comprehensive Supramolecular Chemistry, Vol. 9, eds. J.-P. Sauvage and M. W. Hosseini, Pergamon, Oxford, 1996, 565 CrossRef CAS.
  2. G. R. Desiraju, Acc. Chem. Res., 1996, 29, 441 CrossRef CAS; T. Steiner, Cryst. Rev., 1996, 6, 1 Search PubMed; G. R. Desiraju, Chem. Commun., 1997, 1475 RSC; G. R. Desiraju, Curr. Opin. Solid State Mater. Sci., 1997, 2, 451 CrossRef CAS; C. E. Marjo, M. L. Scudder, D. C. Craig and R. Bishop, J. Chem. Soc., Perkin Trans. 2, 1997, 2099 RSC; F. A. Cotton, L. M. Daniels, G. T. Jordan IV and C. A. Murillo, Chem. Commun., 1997, 1673 RSC; M. Mascal, Chem. Commun., 1998, 303 RSC; T. Steiner and G. R. Desiraju, Chem. Commun., 1998, 891 RSC.
  3. J. A. R. P. Sarma and G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 1985, 1905 RSC; J. A. R. P. Sarma and G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 1987, 1195 RSC; C. V. K. Sharma, K. Panneerselvam, T. Pilati and G. R. Desiraju, J. Chem. Soc., Chem. Commun., 1992, 832 RSC; C. V. K. Sharma, K. Panneerselvam, T. Pilati and G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 1993, 2209 RSC; C. V. K. Sharma and G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 1994, 2345 RSC; C. V. K. Sharma, K. Panneerselvam, L. Shimoni, H. Katz, H. L. Carrell and G. R. Desiraju, Chem. Mater., 1994, 6, 1283; K. Biradha, A. Nangia, G. R. Desiraju, C. J. Carrell and H. L. Carrell, J. Mater Chem., 1997, 7, 1111 RSC.
  4. M. D. Hollingsworth and K. D. M. Harris, in Comprehensive Supramolecular Chemistry, Vol. 6, eds. D. D. MacNicol, F. Toda and R. Bishop, Pergamon, Oxford, 1996, 177 and the references cited therein Search PubMed; K. D. M. Harris, Chem. Soc. Rev., 1997, 26, 279 Search PubMed.
  5. G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311 CrossRef CAS.
  6. G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, University of Göttingen, Germany, 1986; G. M. Sheldrick, SHELXL-93, Program for the refinement of Crystal Structures, University of Göttingen, Germany, 1993.
  7. F. H. Allen, J. E. Davis, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, G. F. Mitchell, J. M. Smith and D. G. Watson, J. Chem. Inf. Comput. Sci., 1991, 31, 187 CrossRef CAS.
  8. A. Gavezzotti, J. Phys. Chem., 1990, 94, 4319 CrossRef.
  9. M. C. Etter, Z. Urbánczyk-Lipkowska, M. Zia-Ebrahimi and T. W. Panunto, J. Am. Chem. Soc., 1990, 112, 8415 CrossRef CAS; J. W. Lauher, Y.-L. Chang, M.-A. West, F. W. Fowler and J. W. Lauher, J. Am. Chem. Soc., 1993, 115, 5991 CrossRef; M. D. Hollingsworth, M. E. Brown, B. D. Santarsiero, J. C. Huffman and C. R. Goss, Chem. Mater., 1994, 6, 1227 CrossRef CAS.
  10. Q. Li and T. C. W. Mak, Acta Crystallogr., Sect. C, 1996, 52, 2830 CrossRef; Q. Li and T. C. W. Mak, J. Inclusion Phenom. Mol. Recognit. Chem., 1997, 28, 151 CrossRef CAS; Q. Li and T. C. W. Mak, Acta Crystallogr., Sect. B, 1998, 54, 180 CrossRef.
  11. D. S. Reddy, D. C. Craig and G. R. Desiraju, J. Chem. Soc., Chem. Commun., 1994, 1457 RSC.
  12. Q. Li and T. C. W. Mak, Acta Crystallogr., Sect. B, 1997, 53, 252 CrossRef; Q. Li and T. C. W. Mak, Acta Crystallogr., Sect. B, 1997, 53, 262 CrossRef.
  13. C. P. Brock and K. L. Haller, Acta Crystallogr., Sect. C, 1984, 40, 1387 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.