NMR studies of proton transfer in 1∶1 tris(trimethoxyphenyl)phosphine oxide–phenol complexes

(Note: The full text of this document is currently only available in the PDF Version )

Claudia M. Lagier, Alejandro C. Olivieri and Robin K. Harris


Abstract

The hydrogen transfer process in adducts between tris(trimethoxyphenyl)phosphine oxide (TMPPO) and eight different substituted phenols has been studied in both the solution and solid states. For this purpose, 1H and 31P NMR solution-state spectra of these complexes have been recorded. The 1H chemical shift of the hydrogen-bonded proton and the 31P chemical shift of the phosphine oxide are largely influenced by the substituents attached to the phenol. Thus, the chemical shift of the hydroxylic hydrogen for complexes in solution varies from lower frequencies (8.2 ppm) for phenol derivatives of high pKa (e.g. 10.2) to higher frequencies (11.9 ppm) as the pKa of the phenol decreases. However, for highly acid phenols such as picric acid (pKa = 0.38), the signal moves to lower frequencies again as a result of the shielding produced by the oxygen atom of the TMPPO residue. On the other hand, the 31P chemical shift of the complexes in solution varies with the same trend: as the pKa of the substituted phenol decreases, the phosphorus signal moves to higher frequencies. The eight complexes have also been studied in the solid state by means of high-resolution CPMAS 13C and 31P NMR experiments. There is also evidence of the hydrogen transfer process in the solid state which causes changes in the 31P shielding tensor, and in the 13C chemical shifts of the phenolic C–O (C1) and para (C4) carbons. In spite of crystallographic packaging effects that might occur in the solid phase, the results parallel those obtained for complexes in solution, since the two sets of NMR data follow almost the same pattern.


References

  1. P. Schuster, G. Zundel and C. Sandorfi, The Hydrogen Bond, Recent Developments in Theory and Experiments, North Holland, Amsterdam, 1976 Search PubMed.
  2. T. L. Brown, L. G. Butler, D. Y. Curtin, Y. Hiyama, I. C. Paul and R. B. Wilson, J. Am. Chem. Soc., 1982, 104, 1172 CrossRef CAS.
  3. J. Emsley, Struct. Bonding (Berlin), 1984, 56, 147.
  4. F. Herbstein, M. Kapon, G. M. Reisner, M. S. Lehman, R. B. Kress, R. B. Wilson, W. I. Shiau, E. N. Duesler, I. C. Paul and D. Y. Curtin, Proc. R. Soc. London, Ser. A, 1985, 399, 295 CAS.
  5. D. R. Clark, J. Emsley and F. Hibbert, J. Chem. Soc., Chem. Commun., 1988, 1252 RSC.
  6. A. J. Vila, C. M. Lagier and A. C. Olivieri, J. Chem. Soc., Perkin Trans. 2, 1990, 1615 RSC.
  7. C. M. Lagier and A. C. Olivieri, Solid State NMR, 1994, 3, 163 CAS.
  8. C. M. Lagier, M. Zuriaga, G. Monti and A. C. Olivieri, J. Phys. Chem. Solids, 1996, 57, 1183 CrossRef CAS.
  9. M. Ilczyszyn, Z. Latajka and H. Ratajczak, Org. Magn. Reson., 1980, 13, 132 Search PubMed.
  10. B. Brycki, Z. Szafran and M. Szafran, Pol. J. Chem., 1980, 54, 221 CAS.
  11. B. Brycki and M. Szafran, J. Chem. Soc., Perkin Trans. 2, 1982, 1333 RSC.
  12. B. Brycki and M. Szafran, J. Chem. Soc., Perkin Trans. 2, 1984, 223 RSC.
  13. T. Keil, B. Brzezinski and G. Zundel, J. Phys. Chem., 1992, 96, 4421 CrossRef CAS.
  14. C. M. Lagier, U. Scheler, G. McGeorge, M. G. Sierra, A. C. Olivieri and R. K. Harris, J. Chem. Soc., Perkin Trans. 2, 1996, 1325 RSC.
  15. F. Guillan, J. P. Senguin, L. Nadjo, R. Uzan, F. Membrey and J. P. Doucet, J. Chem. Soc., Perkin Trans. 2, 1984, 1139 RSC.
  16. M. Ilczyszyn, H. Ratajczak, Z. Latajka and K. Skowronek, Magn. Reson. Chem., 1988, 26, 445 CAS.
  17. B. Brycki, B. Brzezinski, G. Zundel and T. Keil, Magn. Reson. Chem., 1992, 30, 507 CAS.
  18. M. Wada and S. Higashizaki, J. Chem. Soc., Chem. Commun., 1984, 482 RSC.
  19. D. Fenzke, B. Maess and H. Pfeifer, J. Magn. Reson., 1990, 88, 172.
  20. A. C. Olivieri, J. Magn. Reson., 1996, 123, 207 CrossRef CAS.
  21. (a) P. A. Chaloner, R. M. Harrison and P. B. Hitchcock, Acta Crystallogr., Sect. C, 1993, 49, 1072 CrossRef; (b) K. R. Dunbar and S. C. Haefner, Polyhedron, 1994, 13, 727 CrossRef CAS.
  22. R. M. Harrison, Synthesis and structural studies of novel organophosphorus compounds for second harmonic generation, Ph.D. Thesis, University of Sussex, 1993 Search PubMed.
  23. A. R. Grimmer, Spectrochim. Acta, Part A, 1978, 34, 941 CrossRef.
  24. M. Mehring, High Resolution NMR in Solids, Springer-Verlag, Berlin, 1983 Search PubMed.
  25. G. L. Turner, K. A. Smith, R. J. Kirkpatrick and E. Oldfield, J. Magn. Reson., 1986, 70, 408 CAS.
  26. N. E. Burlinson, B. A. Dunell and J. A. Ripmeester, J. Magn. Reson., 1986, 67, 217 CAS.
  27. J. C. Facelli and D. M. Grant, Top. Stereochem., 1989, 19, 1 Search PubMed.
  28. N. J. Clayden, C. M. Dobson, L. Y. Lian and D. J. Smith, J. Magn. Reson., 1986, 69, 476 CAS.
  29. R. K. Harris, P. Jackson, L. H. Merwin, B. J. Say and G. Hägele, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 3469 Search PubMed.
  30. A. J. Vila, C. M. Lagier, G. Wagner and A. C. Olivieri, J. Chem. Soc., Chem. Commun., 1991, 684 RSC.
  31. C. M. Lagier, A. C. Olivieri, D. C. Apperley and R. K. Harris, Solid State NMR, 1992, 1, 205 CAS.
  32. A. C. Olivieri, J. Magn. Reson., 1990, 88, 1 CAS.
  33. R. K. Harris, M. M. Sünnetçioglu, K. S. Cameron and F. G. Riddell, Magn. Reson. Chem., 1993, 31, 963 CAS.
  34. R. M. Cravero, C. Fernandez, M. Gonzalez-Sierra and A. C. Olivieri, J. Chem. Soc., Chem. Commun., 1993, 1253 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.