Micellar kinetics of acyl transfer from n-nonanoyloxybenzenesulfonate and phenyl nonanoate bleach activators to hydrogen peroxide and pernonanoic acid: effect of charge on the surfactant and activator

(Note: The full text of this document is currently only available in the PDF Version )

D. Martin Davies, Steven J. Foggo and Paul M. Paradis


Abstract

The effect of surfactants on the kinetics of the title reactions is analysed using a combined multiple micellar pseudophase model and transition state pseudoequilibrium constant approach which leads to the micellar association constants of the reactants and the apparent (virtual) micellar association constants of the transition states. These association constants reflect the stabilisation of the reactants and transition states, respectively, by the micelle compared with their stability in the bulk aqueous phase. For the reaction of n-nonanoyloxybenzenesulfonate with pernonanoate in the presence of sodium dodecyl sulfate (SDS) the apparent micellar association constant of the transition state is larger than the micellar association constant of the activator; this is consistent with micellar catalysis, whilst micellar inhibition occurs with the anion of hydrogen peroxide. The micellar association constant of phenyl nonanoate with SDS is four orders of magnitude greater than that of n-nonanoyloxybenzenesulfonate due to the absence of the negatively charged sulfonate group, whilst the apparent micellar association constant of the transition state for its reaction with pernonanoate is more than an order of magnitude less. In the non-ionic surfactant Brij-35, the micellar association constant of n-nonanoyloxybenzenesulfonate and the corresponding apparent quantity for the transition state for the reaction with the hydroperoxide anion are, respectively, about one and two orders of magnitude greater than in SDS.


References

  1. For reviews see: A. P. James and I. S. Mackirdy, Chem. Ind. (London), 1990, 641 Search PubMed; K. Grime and A. Clauss, Chem. Ind. (London), 1990, 647 CAS.
  2. D. M. Davies, S. J. Foggo and P. M. Paradis, J. Chem. Soc., Perkin Trans. 2, 1998, 1381 RSC.
  3. D. M. Davies and M. E. Deary, J. Chem. Res., Synop., 1988, 354 Search PubMed.
  4. J. L. Kurz, J. Am. Chem. Soc., 1963, 85, 987 CrossRef CAS For a discussion see, J. Kraut, Science, 1988, 242, 533 Search PubMed.
  5. D. M. Davies, N. D. Gillitt and P. M. Paradis, J. Chem. Soc., Perkin Trans. 2, 1996, 659 RSC.
  6. A. K. Yatsimirski, K. Martinek and I. V. Berezin, Tetrahedron, 1971, 27, 2855 CrossRef; I. V. Berezin, K. Martinek and A. K. Yatsimirski, Russ. Chem. Rev. (Engl. Transl.), 1973, 42, 487 Search PubMed; K. Martinek, A. K. Yatsimirski, A. V. Levashov and I. V. Berezin, in Micellation, Solubilization and Microemulsions, ed. K. I. Mittal, Plenum Press, New York, 1977, vol. 2, p. 489 Search PubMed; J. H. Fendler, Membrane Mimetic Chemistry, Wiley, New York, 1982 Search PubMed.
  7. T. C. Bruice, J. Katzhendler and L. R. Fedor, J. Am. Chem. Soc., 1968, 90, 1333 CrossRef CAS.
  8. P. M. Paradis, Ph.D. thesis, University of Northumbria at Newcastle, 1995.
  9. The leaving group pKa values are taken from the compilation of R. M. Izatt and J. J. Christensen, in Handbook of Biochemistry and Molecular Biology, 3rd Edn., Physical and Chemical Data Vol. 1, ed. G. D. Fasman, CRC Press, Cleveland, OH, 1976 Search PubMed.
  10. M. G. Evans and N. Uri, J. Chem. Soc., Faraday Trans., 1949, 45, 224 Search PubMed.
  11. D. M. Davies and P. Jones, J. Soc. Dyers Colour., 1983, 98, 17 Search PubMed; D. M. Davies, D. Dunn, M. Haydarali, R. M. Jones and J. M. Lawther, J. Chem. Soc., Chem. Commun., 1986, 987 RSC; K. M. Thompson, W. P. Griffith and M. Spiro, J. Chem. Soc., Chem. Commun., 1992, 1600 RSC; K. M. Thompson, W. P. Griffith and M. Spiro, J. Chem. Soc., Faraday Trans., 1993, 89, 1203 RSC; K. M. Thompson, W. P. Griffith and M. Spiro, J. Chem. Soc., Faraday Trans., 1993, 89, 4035 RSC; K. M. Thompson, W. P. Griffith and M. Spiro, J. Chem. Soc., Faraday Trans., 1993, 90, 1105 Search PubMed; J. Oakes, P. Gratton and I. Weil, J. Chem. Soc., Dalton Trans., 1997, 3805 RSC; J. Oakes, G. Welch and P. Gratton, J. Chem. Soc., Dalton Trans., 1997, 3811 RSC.
  12. M. Hedayatullah, C. Lion, A. Tourki, G. Delmas and G. Magnaud, Phosphorus, Sulfur Silicon Relat. Elem., 1994, 89, 1 CAS; J. Toullec and M. Moukawim, Chem. Commun., 1996, 221 RSC; C. Lion, M. Hedayatullah, C. Charvy, G. Delmas, G. Magnaud and H. Sentenac-Roumanou, Bull. Soc. Chim. Belg., 1997, 106, 221 CAS.
  13. Y.-C. Yang, J. A. Baker and J. R. Ward, Chem. Rev., 1992, 92, 1729 CrossRef CAS; F. M. Menger and A. R. Elrington, J. Am. Chem. Soc., 1990, 112, 8201 CrossRef CAS.
  14. D. M. Davies and N. D. Gillitt, J. Chem. Soc., Dalton Trans., 1997, 2819 RSC.
  15. D. M. Davies and S. J. Foggo, J. Chem. Soc., Perkin Trans. 2, 1998, 247 RSC.
  16. C. A. Bunton, H. J. Foroudian and A. Kumar, J. Chem. Soc., Perkin Trans. 2, 1995, 33 RSC; C. A. Bunton and H. J. Foroudian, Langmuir, 1993, 9, 2832 CrossRef CAS; A. Blasko, C. A. Bunton and H. S. J. Foroudian, J. Colloid Interface Sci., 1995, 175, 122 CrossRef CAS; C. J. Drummond and F. Grieser, J. Colloid Interface Sci., 1989, 127, 281 CAS; H. A. Al-Lohedan, J. Chem. Soc., Perkin Trans. 2, 1989, 1181 RSC.
  17. A. Blaskó, C. A. Bunton and S. Wright, J. Phys. Chem., 1993, 97, 5435 CrossRef CAS; S. Amado, L. Garcia-Rio, J. R. Leis and A. Rios, Langmuir, 1997, 13, 687 CrossRef CAS.
  18. I. M. Cucchovia, A. Agostino-Neto, C. M. A. Wendel, H. Chaimovich and L. S. Romsted, Langmuir, 1997, 13, 5032 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.