Mechanistic studies on the decomposition of water soluble azo-radical-initiators

(Note: The full text of this document is currently only available in the PDF Version )

Roy U. Rojas Wahl, Liansheng Zeng, Stephen A. Madison, Richard L. DePinto and Brian J. Shay


Abstract

Spin trapping with nitrones coupled with the use of electron paramagnetic resonance (EPR) is one of the most effective techniques to observe reactive radical oxygen species (RROS), even though the distinction between, for example, alkoxyl and alkylperoxyl radicals is not an easy task. In the light of this very problem, this work summarizes our results using three nitrones as spin traps and three water soluble amidino-azo-initiators as sources for alkylperoxyl and/or alkoxyl radicals. The principal conclusion of this study is that only the corresponding alkoxyl radicals were found to add to the nitrones, and no evidence was found for the alkylperoxyl radical-spin adducts. The spin traps 5-(diethoxyphosphoryl)-5-methyl-4,5-dihydro-3H-pyrrole N-oxide (DEPMPO) as well as methyl-N-durylnitrone (MDN) rendered a discriminative spin adduct assignment much simpler as compared to 5,5-dimethyl-4,5-dihydro-3H-pyrrole N-oxide (DMPO), where liquid chromatography–electrospray mass spectrometry (LC–ESMS) was employed to substantiate the EPR results. For the kinetic decomposition behavior of the azo initiators it was found that at pH 6.2 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH) undergoes hydrolysis to the corresponding amides while the cyclic initiators 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-44) and 2,2′-azobis{2-[2-(4-methyl)imidazolin-2-yl]propane} dihydrochloride (Me-VA-44) are resistant towards hydrolysis over the employed timescale of 30 h.


References

  1. (a) The almost universal importance of these types of radicals may be best illustrated by the vast number of books, reviews and research articles that have appeared over the past decades. See for example the following, arbitrarily chosen four contributions and the references cited therein: Z. Alfassi, ed., Peroxyl Radicals, Wiley, Chichester, 1997 Search PubMed; (b) P. Neta, R. E. Huie and A. B. Ross, J. Phys. Chem. Ref. Data, 1990, 19, 413 CAS; (c) J. K. Kochi, ed., Free Radicals, Vol. I and II, Wiley, Chichester, 1973 Search PubMed; (d) K. U. Ingold, Acc. Chem. Res., 1969, 2, 1 CrossRef CAS.
  2. A. G. Krainev and D. J. Bigelow, J. Chem. Soc., Perkin Trans. 2, 1996, 747 RSC and references therein.
  3. C. Von Sonntag and H. P. Schuchmann, Angew. Chem. Int. Ed. Engl., 1991, 30, 1229 CrossRef and references therein.
  4. G. A. Russell, J. Am. Chem. Soc., 1957, 79, 3871 CrossRef.
  5. C. Walling and P. J. Wagner, J. Am. Chem. Soc., 1964, 86, 3368 CrossRef.
  6. B. C. Gilbert, P. D. R. Marshall, R. O. C. Norman, N. Pineda and P. S. Williams, J. Chem. Soc., Perkin Trans. 2, 1981, 1392 RSC.
  7. I. W. C. E. Arends, K. U. Ingold and D. D. M. Wayner, J. Am. Chem. Soc., 1995, 117, 4710 CrossRef CAS.
  8. M. N. Schuchmann and C. von Sonntag, Z. Naturforsch. B, 1987, 42, 495 CAS.
  9. A. R. Costello, J. R. Lindsay Smith, M. S. Stark and D. J. Waddington, J. Chem. Soc., Faraday Trans., 1996, 92, 3497 RSC and references therein.
  10. (a) J. A. Howard and K. U. Ingold, Can. J. Chem., 1968, 46, 2655 CAS; (b) J. A. Howard, K. Adamic and K. U. Ingold, Can. J. Chem., 1969, 47, 3793 CAS.
  11. G. R. Buettner and L. W. Oberley, Biochem. Biophys. Res. Commun., 1978, 83, 69 CAS.
  12. K. Makino, T. Hagiwara, A. Hagi, M. Nishi and A. Murakami, Biochem. Biophys. Res. Commun., 1990, 172, 1073 CrossRef CAS.
  13. P. M. Hanna, W. Chamulitrat and R. P. Mason, Arch. Biochem. Biophys., 1992, 2, 640 CrossRef CAS.
  14. (a) The DMPO–OOH adduct has chiefly been investigated due to its biological relevance. It was found to decompose and yield the DMPO–OH spin adduct. Most studies are qualitative, but for a quantitative investigation see: I. Yamazaki, L. Piette and T. A. Grover, J. Biol. Chem., 1990, 265, 652 Search PubMed and references therein; (b) In general, alkylperoxy aminoxyls can decompose to yield alkoxy alkyl aminoxyls. See: M. J. Perkins and B. P. Roberts, J. Chem. Soc., Perkin Trans. 2, 1974, 297 Search PubMed; (c) K. Hensley, M. Aksenova, J. M. Carney, M. Harris and D. A. Butterfield, Neuro Report, 1995, 6, 493 Search PubMed.
  15. (a) For C-2 methyl substitution and 13C-2 labelling see: D. Barasch, M. C. Krishna, A. Russo, J. Katzhendler and A. Samuni, J. Am. Chem. Soc., 1994, 116, 7319 Search PubMed; (b) For C-2 phenyl substitution ans 13C-2 labelling see: E. G. Janzen, Y. K. Zhang and D. Lawrence Haire, J. Am. Chem. Soc., 1994, 116, 3738 Search PubMed; (c) For C-2 31P-substitution see: E. G. Janzen and Y. K. Zhang, J. Org. Chem., 1995, 60, 5441 Search PubMed; (d) For C-2 CF3 substitution see: E. G. Janzen, Y. K. Zhang and M. Arimura, J. Org. Chem., 1995, 60, 5434 Search PubMed Note that C-2 substitution removes the β-H, and therefore abstraction of that hydrogen and subsequent disproportionation of the spin adduct is prevented, which should lead to higher stability.
  16. E. G. Janzen, P. H. Krygsman, D. A. Lindsay and D. H. Haire, J. Am. Chem. Soc., 1990, 112, 8279 CrossRef CAS Notably, also LC–MS has been used to identify the spin adducts.
  17. K. Makino, T. Hagikawa and A. Murakami, Radiat. Phys. Chem., 1991, 37, 657 CrossRef CAS.
  18. E. G. Janzen and D. L. Haire, Adv. Free Radical Chem., 1990, 1, 253 Search PubMed.
  19. A. Y. Gerchikov, I. S. Nasyrov, N. A. Akmanova, V. S. Martemiyanov and E. T. Denisov, React. Kinet. Catal. Lett., 1987, 33, 317 CAS.
  20. W. Chamulitrat, N. Takahashi and R. P. Mason, J. Biol. Chem., 1989, 264, 7889 CAS and references therein.
  21. J. I. Ueda, N. Saito and T. Ozawa, J. Inorg. Biochem., 1996, 64, 197 CrossRef CAS and references cited therein.
  22. M. J. Davies, Biochim. Biophys. Acta, 1988, 964, 28 CrossRef CAS.
  23. (a) C. Frejaville, H. Karoui, B. Tuccio, F. LeMoigne, M. Culcasi, S. Pietri, R. Lauricella and P. Tordo, J. Med. Chem., 1995, 38, 258 CrossRef CAS; (b) B. Tuccio, R. Lauricella, C. Frejaville, J. C. Bouteiller and P. Tordo, J. Chem. Soc., Perkin Trans. 2, 1995, 295 RSC.
  24. R. Konaka, S. Terabe, T. Mizuta and S. Sakata, Can. J. Chem., 1982, 60, 1532 CAS.
  25. T. Yamada, E. Niki, S. Yokoi, J. Tsuchiya, Y. Yamamoto and Y. Kamiya, Chem. Phys. Lipids, 1984, 36, 189 CrossRef CAS.
  26. B. Plesnicar, F. Kovac and M. Schara, J. Am. Chem. Soc., 1988, 110, 214 CrossRef CAS.
  27. E. Niki, S. Yokoi, J. Tsuchiya and Y. Kamaiya, J. Am. Chem. Soc., 1983, 105, 1498 CrossRef CAS.
  28. In a recent contribution, liquid chromatography–mass spectrometry is used for the characterization of the DMPO–OR spin adduct (R derived from AAPH): A. G. Krainev, T. D. Williams and D. J. Bigelow, J. Magn. Res. B, 1996, 111, 272 Search PubMed.
  29. H. Fujie, K. Shiraki, T. Miyagawa, N. Minamii, B. Yamada and T. Otsu, Pure Appl. Chem., 1992, A29, 741 CAS The decomposition was followed by UV at 50 °C. No hydrolysis problem was reported, however. This can be explained by the fact that the authors followed the decomposition only for the first 50 min.
  30. A. I. Meyers, J. P. Lawson, D. G. Walker and R. J. Linderman, J. Org. Chem., 1986, 51, 5111 CrossRef CAS.
  31. The existence of two diastereomers is also proposed for the DEPMPO-OOH adduct. In the case of DMPO–OOH, Buettner was the first to propose similar effects in phosphate buffered solutions. See: G. R. Buettner, Free Radical Res. Commun., 1990, 10, 11 Search PubMed.
  32. Only very minor modifications such as shorter reaction times (2 days for synthesis of acetoxymercuridurene) were made. (a) For the mercuriation of durene see: L. I. Smith and F. L. Taylor, J. Am. Chem. Soc., 1935, 57, 2370 Search PubMed; (b) For the subsequent nitrosation see: L. I. Smith and F. L. Taylor, J. Am. Chem. Soc., 1935, 57, 2460 Search PubMed and reference 8 therein.
  33. The only available procedure does not describe the synthesis of MDN itself, but it reports the synthesis of derivatives of the MDN spin trap such as N-mesitylenemesitylamine N-oxide. See J. E. Baldwin, A. K. Qureshi and B. Sklarz, J. Chem. Soc., 1969, 1073 Search PubMed.
  34. E. G. Janzen and B. J. Blackburn, J. Am. Chem. Soc., 1969, 91, 4481 CrossRef CAS.
  35. R. B. Cole, ed., Electrospray Ionization Mass Spectrometry, John Wiley and Sons, New York, 1997 Search PubMed.
  36. H. Iwahashi, J. Chromatogr. A, 1996, 753, 235 CrossRef CAS.
  37. J. A. Weil, J. R. Bolton and J. E. Wertz, Electron Paramagnetic Resonance, Elementary Theory and Practical Applications, John Wiley and Sons, New York, Singapore, 1994 Search PubMed.
  38. B. Eistert, H. Fink, J. Riedinger, H. G. Hahn and H. Dürr, Chem. Ber., 1969, 102, 3111 CAS.
  39. For synthesis of methyl acetimidate hydrochloride, see A. I. Myers, J. P. Lawson, D. G. Walker and R. J. Linderman, J. Org. Chem., 1986, 51, 5111 Search PubMed.
  40. E. G. Janzen, G. A. Coulter, U. M. Oehler and J. P. Bergsma, Can. J. Chem., 1982, 60, 2725 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.