Binding of dansylamide[hair space]† derivatives to nucleotides and nucleic acids[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Xuemei Wang and Hans-Jörg Schneider


Abstract

Dansylamide[hair space]† has been modified by the introduction of several side chains into the sulfonamide substituent. Compounds with no, or with only one positive charge at the side chains were found not to be useful for association studies with nucleotides or nucleic acids. Relatively high binding constants with moderate base selectivities have been observed with a ligand obtained from dansyl chloride and N,N′-bis(3-aminopropyl)piperazine, which contains two dansyl units and two permanently charged peralkylammonium centers. Interactions of this ligand with double-stranded nucleic acids show a biphasic binding, the first at base pair concentrations below 10–7 M being only detectable by a decrease of fluorescence intensity. The second phase is characterized by increased fluorescence and by wavelength changes similar to effects observed in lipophilic solvents and by affinities of up to 5 × 105 M. At higher concentrations bathochromic shifts and extinction changes in UV spectra of the dye suggest an intercalation mechanism, in line with preliminary circular dichroism studies.


References

  1. Supramolecular Chemistry, Part 80 Search PubMed; part 79: V. P. Solov'ev, N. N. Strakhova, V. P. Kazachenko, A. F. Solotnov, V. E. Baulin, O. Raevsky, V. Rüdiger, F. Eblinger and H.-J. Schneider, Eur. J. Org. Chem., 1998, in the press Search PubMed.
  2. (a) M. J. Waring, in The Molecular Basis of Antibiotic Action, ed. E. F. Gale, E. Cundliffe, P. E. Reynolds, M. H. Richmond and M. J. Waring, Wiley, London, 2nd edn., 1981, p. 287 Search PubMed; (b) D. W. Wilson, Y. Li and J. Veal, in Advances in DNA Sequence Specific Agents, ed. L. H. Hurley, JAI Press, Greenwich, vol. 1, 1992, p. 89 Search PubMed; (c) W. D. Wilson, in Nucleic Acids in Chemistry and Biology, ed. M. Blackburn and M. Gait, IRL Press, Oxford, 1989, ch. 8 Search PubMed; (d) J. W. Lown, Anti-Cancer Drug. Des., 1988, 3, 25 Search PubMed; (e) P. B. Dervan, Science, 1986, 232, 464 CrossRef CAS; (f) S. Neidle and Z. Abraham, CRC Crit. Rev. Biochem., 1984, 17, 73 Search PubMed; (g) S. Neidle and T. C. Jenkins, Mol. Des. Model., Part B, 1991, 203, 433 Search PubMed; (h) B. H. Geierstanger and D. E. Wemmer, Annu. Rev. Biophys. Biomol. Struct., 1995, 24, 463 CrossRef CAS.
  3. S. Claude, J.-M. Lehn, F. Schmidt and J.-P. Vigneron, J. Chem. Soc., Chem. Commun., 1991, 1182 RSC.
  4. H.-J. Schneider, T. Blatter, B. Palm, U. Pfingstag, V. Rüdiger and I. Theis, J. Am. Chem. Soc., 1992, 114, 7704 CrossRef CAS.
  5. A.-V. Eliseev and H.-J. Schneider, J. Am. Chem. Soc., 1994, 116, 6081 CrossRef CAS.
  6. G. Loontiens, P. Regenfuss, A. Zechel, L. Dumortier and R. M. Clegg, Biochemistry, 1990, 29, 9029 CrossRef CAS.
  7. See e.g. J. Y. Fan, D. Sun, H. T. Yu, S. M. Kervin and L. H. Hurley, J. Med. Chem., 1995, 38, 408 Search PubMed; J. B. Chaires, N. Dattagupta and D. Crothers, Biochemistry, 1982, 21, 3927 CrossRef CAS.
  8. J. Sartorius and H.-J. Schneider, J. Chem. Soc., Perkin Trans. 2, 1997, 2319 RSC.
  9. A. M. Pyle, J. P. Rehmann, R. Mashoyrer, C. V. Kumar, N. J. Turro and J. K. Barton, J. Am. Chem. Soc., 1989, 111, 3051 CrossRef CAS.
  10. W. D. Wilson and R. L. Jones, in Intercalation Chemistry, ed. M. S. Whittingham and A. J. Jacobson, Academic Press, New York, 1992, pp. 446–501 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.