Nucleophilic substitution reactions of 2-norbornyl arenesulfonates with anilines

(Note: The full text of this document is currently only available in the PDF Version )

Hyuck Keun Oh, Eun-Mi Joung, In Ho Cho, Young Sook Park and Ikchoon Lee


Abstract

The kinetics and mechanism of the nucleophilic substitution reactions of exo- and endo-2-norbornyl arenesulfonates with anilines are investigated in methanol and acetonitrile at 60.0 °C. Rate constants for three distinct competing processes, solvolysis ks, unimolecular k1 and bimolecular k2, are separately determined by plotting kobsvs. aniline concentration [Nu], kobs = k1 + k2[Nu], where k1 = ks + kn with kn as the nonsolvolytic SN1 rate constant. The kn/ks value ranges from 6 to 7. The extent of leaving group departure in the transition state expressed by ρZ (where Z is a substituent in the leaving group) is always (for ks, k1 and k2) greater for exo than for endo suggesting a greater degree of bond cleavage in the exo system. The cross-interaction constants, ρXZ, are zero for ks and kn, but are the smallest ever obtained with distinctly non-zero value (ρXZ ⩽ 0.01) for k2. The transition state structures of the SN2 pathway are of a very loose, open or ‘exploded’ type as judged by the very small magnitudes of ρX (where X is a substituent in the nucleophile) and ρXZ coupled with the large values of ρZ. The reactions of exo-2-norbornyl arenesulfonates in the aprotic solvent, CH3CN, are characterized by a much smaller ρZ for k1 but a larger value of ρZ for k2 than those in CH3OH. All the experimental results support a preassociation mechanism for the bimolecular substitution process (k2).


References

  1. (a) T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper and Row, New York, 3rd edn., 1987, pp. 463–478 Search PubMed; (b) P. R. Schreiner, P. v. R. Schleyer and H. F. Schaefer, III, J. Org. Chem., 1997, 62, 4216 CrossRef CAS.
  2. (a) S. Winstein and D. S. Trifan, J. Am. Chem. Soc., 1949, 71, 2953 CrossRef CAS; (b) S. Winstein and D. S. Trifan, J. Am. Chem. Soc., 1952, 74, 1147, 1154 CrossRef CAS.
  3. (a) H. C. Brown and F. J. Chloupek, J. Am. Chem. Soc., 1963, 85, 2322 CrossRef CAS; (b) H. C. Brown, The Nonclassical Ion Problem, Plenum, New York, 1977 Search PubMed.
  4. (a) G. A. Olah, Angew. Chem., Int. Ed. Engl., 1973, 12, 173 CrossRef; (b) G. A. Olah, Acc. Chem. Res., 1983, 16, 440 CrossRef CAS; (c) M. Saunders and M. R. Kates, J. Am. Chem. Soc., 1980, 102, 6867 CrossRef CAS; (d) M. Saunders and M. R. Kates, J. Am. Chem. Soc., 1983, 105, 3571 CrossRef CAS; (e) E. M. Arnett and T. C. Hofelich, J. Am. Chem. Soc., 1983, 105, 2889 CrossRef CAS; (f) M. Saunders and C. S. Johnson, Jr., J. Am. Chem. Soc., 1987, 109, 4401 CrossRef CAS.
  5. (a) P. v. R. Schleyer and S. Sieber, Angew. Chem., 1993, 32, 1606; (b) S. Sieber, P. Buzek, P. v. R. Schleyer, W. Koch and J. W. de M. Carneiro, J. Am. Chem. Soc., 1993, 15, 259 CrossRef.
  6. (a) I. Lee, Chem. Soc. Rev., 1990, 19, 317 RSC; (b) I. Lee, Adv. Phys. Org. Chem., 1992, 27, 57 CAS; (c) I. Lee, J. Phys. Org. Chem., 1996, 9, 661 CrossRef CAS.
  7. (a) I. Lee, C. K. Kim, D. S. Chung and B. S. Lee, J. Org. Chem., 1994, 59, 4490 CrossRef CAS; (b) I. Lee, Chem. Soc. Rev., 1995, 24, 223 RSC; (c) H. K. Oh, Y. B. Kwon, D. S. Chung and I. Lee, J. Phys. Org. Chem., 1996, 9, 683 CrossRef CAS; (d) H. K. Oh, Y. B. Kwon, D. S. Chung and I. Lee, Bull. Korean Chem. Soc., 1995, 16, 827 CAS.
  8. C. Lim, S.-H. Kim, S.-D. Yoh, M. Fujio and Y. Tsuno, Tetrahedron Lett., 1997, 38, 3243 CrossRef CAS.
  9. (a) R. W. Alder, R. Baker and J. M. Brown, Mechanism in Organic Chemistry, Wiley, New York, 1971, p. 87 Search PubMed; (b) F. Ruff and I. G. Csizmadia, Organic Reactions, Equilibria, Kinetics and Mechanism, Elsevier, Amsterdam, 1994, p. 303 Search PubMed.
  10. I. Lee, M. S. Choi and H. W. Lee, J. Chem. Res., 1994, (S) 92; (M) 0568–0587 Search PubMed.
  11. H. K. Oh, Y. B. Kwon, H.-J. Koh and I. Lee, New J. Chem., 1996, 20, 579 Search PubMed.
  12. D. N. Kevil, K. C. Kolwyck, D. M. Shold and C.-B. Kim, J. Am. Chem. Soc., 1973, 95, 6022 CrossRef.
  13. (a) J. P. Richard, M. E. Rothenberg and W. P. Jencks, J. Am. Chem. Soc., 1984, 106, 1361 CrossRef CAS; (b) J. P. Richard and W. P. Jencks, J. Am. Chem. Soc., 1984, 106, 1383 CrossRef CAS; (c) W. P. Jencks, Chem. Soc. Rev., 1981, 10, 345 RSC; (d) W. P. Jencks, Acc. Chem. Res., 1980, 13, 161 CrossRef CAS; (e) C. D. Ritchie, Physical Organic Chemistry. The Fundamental Concepts, 2nd edn., Marcel Dekker, New York, 1990, ch. 4 Search PubMed.
  14. M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum, New York, 1975, p. 212 Search PubMed.
  15. (a) A. Pross, Adv. Phys. Org. Chem., 1979, 14, 69; (b) E. Buncel and H. Wilson, J. Chem. Educ., 1987, 64, 475 CAS.
  16. (a) D. D. Robert, J. Org. Chem., 1984, 49, 2521 CrossRef; (b) H. C. Brown and E. N. Peters, J. Am. Chem. Soc., 1975, 97, 1927, 7442 CrossRef CAS.
  17. (a) I. Lee, H. K. Kang and H. W. Lee, J. Am. Chem. Soc., 1987, 109, 7472 CrossRef CAS; (b) I. Lee, H. Y. Kim and H. W. Lee, J. Org. Chem., 1988, 53, 2678 CrossRef CAS.
  18. I. Lee, H.-J. Koh, B. S. Lee, D. S. Sohn and B. C. Lee, J. Chem. Soc., Perkin Trans. 2, 1991, 1741 RSC.
  19. I. Lee, B. S. Lee, S. C. Shon and B. C. Lee, Bull. Korean Chem. Soc., 1985, 6, 587.
  20. R. V. Hoffman and J. Schankweiler, J. Am. Chem. Soc., 1988, 108, 5536.
Click here to see how this site uses Cookies. View our privacy policy here.