Effect of steric hindrance on the rates and kinetic isotope effects of the reactions of 1-nitro-1-(4-nitrophenyl)alkanes with TBD and MTBD bases in THF

(Note: The full text of this document is currently only available in the PDF Version )

Włodzimierz Gałęzowski, Iwona Grzeskowiak and Arnold Jarczewski


Abstract

The rates of the reactions of 1-nitro-1-(4-nitrophenyl)alkanes and their deuteriated analogues with two bicyclic guanidines of comparable basicity, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), in tetrahydrofuran have been measured. The results are discussed in terms of the effects of steric hindrance in the C-acid and the base on the rates and deuterium kinetic isotope effects (KIEs). The reactions of TBD are 118–287 times faster than reactions of MTBD with the same nitroalkanes. The stabilization of the transition state of the TBD reactions by the N–H[hair space][hair space]· · ·[hair space][hair space]O hydrogen bond is plausible. With the most sterically crowded C-acid, the steric hindrance in the base gives a reduced deuterium KIE. Deuterium KIEs for the reactions of MTBD with various C-acids decreases with the steric hindrance in the C-acid but the reverse is true for TBD reactions. Results of this work disagree with the notion that steric hindrance leads to enhanced kinetic isotope effects.


References

  1. R. P. Bell, The Proton in Chemistry, Chapman and Hall, London, 2nd edn., 1973, ch. 7 Search PubMed.
  2. R. P. Bell, The Proton in Chemistry, Chapman and Hall, London, 2nd edn., 1973, ch. 10 Search PubMed.
  3. F. Terrier, L. Xiao, P. G. Farrell and D. Moscowitz, J. Chem. Soc., Perkin Trans. 2, 1992, 1259 RSC and refs. therein.
  4. E. S. Lewis and L. H. Funderburk, J. Am. Chem. Soc., 1967, 89, 2322 CrossRef CAS.
  5. R. P. Bell, The Proton in Chemistry, Chapman and Hall, London, 2nd edn., 1973, ch. 12 Search PubMed.
  6. N. Sugimoto, M. Sasaki and J. Osugi, J. Chem. Soc., Perkin Trans. 2, 1984, 655 RSC.
  7. P. Pruszynski, Can. J. Chem., 1987, 65, 2160 CAS.
  8. K. T. Leffek and P. Pruszynski, Can. J. Chem., 1988, 66, 1454 CAS.
  9. N. Sugimoto and M. Sasaki, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 1441 RSC.
  10. W. Galezowski and A. Jarczewski, Can. J. Chem., 1990, 68, 2242 CAS.
  11. G. Schroeder, B. Leska, A. Jarczewski, B. Nowak-Wydra and B. Brzezinski, J. Mol. Struct., 1995, 344, 77 CrossRef CAS.
  12. G. Schroeder, B. Brzezinski, B. Leska, B. Gierczyk and A. Jarczewski, Bull. Pol. Acad. Sci., Chem., 1996, 44, 45 Search PubMed.
  13. G. Shroeder, B. Brzezinski, A. Jarczewski, E. Grech and P. Milart, J. Mol. Struct., 1996, 384, 127 CrossRef.
  14. W. Galezowski and A. Jarczewski, J. Chem. Soc., Perkin Trans. 2, 1989, 1647 RSC.
  15. W. Galezowski, I. Grzeskowiak and A. Jarczewski, unpublished results.
  16. R. Schwezinger, Chimia, 1985, 39, 269 CAS.
  17. P. H. Boyle, M. A. Convery, A. P. Davis, G. D. Hosken and B. A. Murray, J. Chem. Soc., Chem. Commun., 1992, 239 RSC.
  18. E. van Aken, H. Wynberg and F. van Bolhuis, J. Chem. Soc., Chem. Commun., 1992, 629 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.