Nitrosation and denitrosation of substituted N-methylbenzenesulfonamides. Evidence of an imbalanced concerted mechanism

(Note: The full text of this document is currently only available in the PDF Version )

Luis García-Río, J. Ramon Leis, José A. Moreira and Fatima Norberto


Abstract

The kinetics of the nitrosation reaction of several substituted sulfonamides and of the denitrosation of the resulting products have been studied. The denitrosation rate is first-order with respect to both the nitroso compound and acid concentration and no effect of added nucleophiles was observed. The denitrosation reaction is general-acid catalysed, with a Brønsted parameter, αd, of 0.7, which is independent of the substituents on the aromatic ring. Kinetic solvent isotope effects range from kdH3O+/kdD3O+ = 1.20 ± 0.05 to 2.04 ± 0.06 for denitrosation by L3O+ and from kdAH/kdAD = 1.5 ± 0.2 to 2.3 ± 0.3 for denitrosation by dichloroacetic acid, which suggest that a rate-determining proton transfer is involved in this reaction. For nitrosation reaction, the absence of catalysis by nucleophilic anions, the observed general-base catalysis (βNO = 0.3) and the substituent effects suggest a concerted nitrosation–denitrosation process. The Leffler parameters obtained for N[hair space][hair space]· · ·[hair space][hair space]H bond formation (αnuc = 0.7) as well as for N[hair space][hair space]· · ·[hair space][hair space]N[double bond, length half m-dash]O bond breaking (αlg = 0.17) are in favour of an imbalance in the transition state (αimbalance = 0.53) with the development of a positive charge on the nitrogen adjacent to the nitroso group.


References

  1. D. L. H. Williams, Nitrosation, Cambridge University Press, UK, 1988 Search PubMed.
  2. (a) A. Castro, E. Iglesias, J. R. Leis, M. E. Peña and J. Vázquez Tato, J. Chem. Soc., Perkin Trans. 2, 1986, 1725 RSC; (b) J. Casado, A. Castro, F. Meijide, M. Mosquera and J. Vázquez Tato, J. Chem. Soc., Perkin Trans. 2, 1987, 1759 RSC; (c) C. Bravo, P. Hervés, J. R. Leis and M. E. Peña, J. Chem. Soc., Perkin Trans. 2, 1991, 2091 RSC.
  3. J. Casado, A. Castro, M. Mosquera, M. F. Rodriguez Prieto and J. Vázquez Tato, Ber. Bunsenges. Phys. Chem., 1983, 87, 1211 Search PubMed.
  4. G. Hallett and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1980, 1372 RSC.
  5. J. Casado, A. Castro, J. R. Leis, M. Mosquera and M. E. Peña, Monatsh. Chem., 1984, 115, 1047 CAS.
  6. T. H. Black, Aldrichimica Acta, 1983, 16, 3 Search PubMed.
  7. L. García-Río, J. R. Leis, J. A. Moreira and F. Norberto, J. Phys. Org. Chem., in the press Search PubMed.
  8. (a) L. García-Río, E. Iglesias and J. R. Leis, J. Org. Chem., 1997, 62, 4701 CrossRef CAS; (b) L. García-Río, E. Iglesias and J. R. Leis, J. Org. Chem., 1997, 62, 4712 CrossRef CAS.
  9. (a) R. Montesano and H. Bartsch, Mutation Res., 1976, 32, 179 Search PubMed; (b) A. E. Pegg, Adv. Cancer Res., 1977, 25, 195 Search PubMed.
  10. (a) Transplacental Carcinogenics, eds. L. Tomatis and U. Mohr, IARC Scientific Publications no. 4, IARC, Lyon, 1973 Search PubMed; (b) D. Yarosh, Mutation Res., 1985, 145, 1 Search PubMed.
  11. D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1976, 1838 RSC.
  12. E. Iglesias, L. García-Río, J. R. Leis, M. E. Peña and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1992, 1673 RSC.
  13. G. Dauphin and A. Kergomard, Bull. Soc. Chim. Fr., 1961, 5, 486.
  14. C. N. Berry and B. C. Challis, J. Chem. Soc., Perkin Trans. 2, 1974, 1638 RSC.
  15. P. Salomaa, L. L. Schaleger and F. A. Long, J. Am. Chem. Soc., 1964, 86, 1 CrossRef CAS.
  16. I. D. Biggs and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1975, 107 RSC.
  17. L. García-Río, J. R. Leis, J. A. Moreira and F. Norberto, unpublished results.
  18. (a) N. S. Bayliss, R. Dingle, D. W. Watts and R. C. Wilkie, Aust. J. Chem., 1963, 16, 933; (b) J. H. Ridd, Adv. Phys. Org. Chem., 1978, 15, 1.
  19. B. C. Challis and J. A. Challis, in The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives, ed. S. Patai, Wiley, New York, 1983, ch. 26 Search PubMed.
  20. R. P. Bell, The Proton in Chemistry, Chapman and Hall, London, 1973 Search PubMed.
  21. (a) L. Melander and W. H. Saunders, Reaction Rates of Isotopic Molecules, Wiley, New York, 1980 Search PubMed; (b) J. Albery, in Proton Transfer Reactions, eds. E. Caldin and V. Gold, Chapman and Hall, London, 1975, p. 263 Search PubMed.
  22. A. J. Kresge, Pure Appl. Chem., 1964, 8, 243 CAS.
  23. The magnitude of the isotope effects is similar for hydron transfer from the hydronium ion and from the carboxylic acids, which implies a more symmetrical transition state for the former than for the latter. However experimental data show much more variation in reactivity within the carboxylic acid set than between it and the hydronium ion. As one of the referees suggests this anomaly could be rationalised by considering that isotope effects between electronegative atoms are always secondary with no primary component [see (a)]. Nevertheless the secondary isotope effect of 1.25, which is obtained for denitrosation by carboxylic acid by using the fractionation factors [see (b)], is not consistent with experimental data. We think that the similarity in reactivity between carboxylic acids and the hydronium ion is due to the switch from a neutral to a cationic acid as is reported in the following references. (a) C. G. Swain, D. A. Kuhn and R. L. Schowen, J. Am. Chem. Soc., 1965, 87, 1553 CrossRef; (b) K. B. J. Schowen, in Transition States of Biochemical Processes, eds. R. D. Gandour and R. L. Schowen, Plenum Press, New York, 1978, ch. 6 Search PubMed.
  24. W. P. Jencks, Chem. Rev., 1972, 72, 705 CrossRef CAS.
  25. R. A. More O'Ferrall, J. Chem. Soc. B, 1970, 274 RSC.
  26. (a) A. Williams, Acc. Chem. Res., 1984, 17, 425 CrossRef CAS; (b) A. Williams, Adv. Phys. Org. Chem., 1992, 27, 1 CAS.
  27. A. R. Hopkins, R. A. Day and A. Williams, J. Am. Chem. Soc., 1983, 105, 6062 CrossRef CAS.
  28. J. Shakes, C. Raymond, D. Rettura and A. Williams, J. Chem. Soc., Perkin Trans. 2, 1996, 1553 RSC.
  29. (a) C. F. Bernasconi, Tetrahedron, 1985, 41, 3219 CrossRef CAS; (b) C. F. Bernasconi, Acc. Chem. Res., 1987, 20, 301 CrossRef CAS; (c) C. F. Bernasconi, Adv. Phys. Org. Chem., 1992, 27, 119 CAS.
  30. M. Eigen, Angew. Chem., Int. Ed. Engl., 1964, 3, 1 CrossRef.
  31. A. Williams, Chem. Soc. Rev., 1994, 23, 93 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.