An EPR investigation into the reactions of alkaline hydrogen peroxide with cyanamide

(Note: The full text of this document is currently only available in the PDF Version )

John F. Kadla and Charles R. Cornman


Abstract

Free-radical involvement in an alkaline hydrogen peroxide/cyanamide system has been demonstrated using electron paramagnetic resonance (EPR) spectroscopy. A stable free radical is formed which shows coupling to two pairs of equivalent 14N nuclei (a14N1 = 7.30, a14N2 = 2.13 G). Both hydroxyl and carbon-centered radicals have been trapped with 5,5-dimethyl-4,5-dihydro-3H-pyrrole N-oxide (DMPO) (DMPO–OH: aH = aN = 14.9 G, DMPO–C: aH = 24.0, aN = 16.4 G). The presence of HOO˙ has been inferred based on the absence of reactivity in the presence of superoxide dismutase. Involvement of superoxide and cyanamide radicals has been demonstrated by the formation of ring-opened and cyanamide coupled products obtained from reactions of alkaline hydrogen peroxide–cyanamide with substituted aromatic compounds.


References

  1. D. T. Sawyer, Oxygen Chemistry, Oxford University Press, New York, 1991 Search PubMed.
  2. J. S. Valentine, in Bioinorganic Chemistry, ed. I. Bertini, H. B. Gray, S. J. Lippard and J. S. Valentine, University Science Books, Mill Valley, CA, 1994, pp. 253–313 Search PubMed.
  3. R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981 Search PubMed.
  4. P. G. Wannier and R. A. Linke, Astrophys. J., 1978, 226, 817 CrossRef CAS.
  5. C. Ponnamperuma and E. Peterson, Science, 1965, 147, 1572 CAS.
  6. C. W. Loomis and J. F. Brien, Can. J. Physiol. Pharmacol., 1983, 61, 1025 CAS.
  7. (a) B. Hammer, H. Michaud and S. Weiss, Process for Bleaching and Delignifying Cellulose-Containing Products, U.S. Patent 5,034,096, 1991 Search PubMed; (b) W. Strum, Wochenblatt der Papierfabrikation, 1990, 10, 423 Search PubMed; (c) T. B. Reisner and H. E. Teichmann, Tappi Pulping Conference Proceedings, 1992, 777 Search PubMed; (d) W. Strum and G. Kuchler, Non-Chlorine Bleaching Conference Proceedings, San Francisco, 1993, 31 Search PubMed; (e) J. Hamilton, D. Senior, A. Sartiogo, J. Szewec and A. Ragauskas, Tappi., 1996, 79, 231 Search PubMed.
  8. Y. Sawaki and Y. Ogata, Bull Chem Soc. Jpn., 1981, 54, 793 CAS.
  9. (a) D. B. Denney and J. D. Rosen, Tetrahedron, 1964, 20, 271 CrossRef CAS; (b) H. Berger and A. F. Bickel, Trans. Faraday Soc., 1961, 57, 1325 RSC; (c) H. Berger, Trans. Faraday Soc., 1962, 58, 1137 RSC.
  10. J. A. Weil, J. R. Boltron and J. E. Wertz, Electron Paramagnetic Resonance: Elemental Theory and Practical Applications, Wiley, New York, NY, 1994 Search PubMed. For reviews on spin trapping see: (a) E. G. Janzen, Acc. Chem. Res., 1971, 4, 31 Search PubMed ; (b) G. R. Buettner, Free Radical Biology and Medicine, 1987, 3, 259 Search PubMed.
  11. (a) K. Stolze and H. Nohl, Biochem. Pharmacol., 1990, 40(4), 799 CrossRef CAS; (b) G. Lassmann and B. Liermann, Free Radical. Biol. Med., 1989, 6, 241 CrossRef CAS.
  12. The pKa of cyanamide is 10.3 (D. R. May, in Encyclopedia of Chemical Technology, ed. M. Grayson, vol. 7, John Wiley and Sons, New York, 1979pp. 291–306); therefore, the cyanamide radical may originate from the corresponding cyanamide anion Search PubMed.
  13. M. S. Kharasch, A. Fono, W. Nudenberg and B. Bischof, J. Org. Chem., 1952, 17, 207 CrossRef CAS.
  14. A. B. O'Connell, H. Chandra, S. P. Mishra, A. Hasegawa and M. C. R. Symons, J. Chem. Soc., Faraday Trans., 1991, 87, 3129 RSC.
  15. V. A. Pankratov and A. E. Chesnokova, Russ. Chem. Rev., 1989, 58, 1528 Search PubMed.
  16. (a) J. B. Moffat, J. Mol. Struct. (THEOCHEM.), 1981, 86, 119 CrossRef; (b) J. B. Moffat, J. Mol. Struct. (THEOCHEM.), 1983, 94, 261 CrossRef It should be noted that these calculations do not take into account the entropy associated with converting two particles into one particle in the solution phase. However, given that the charge is unchanged upon dimerization and the proton-donor/acceptor nature is little changed upon dimerization, we anticipate that entropic effects will have only a small influence on overall stability.
  17. (a) P. Molina, M. Alajarin, J. R. Saez, M. C. Foces-Foces, F. H. Cano, R. M. Claramunt and J. Elguero, J. Chem. Soc., Perkin Trans. 1, 1986, 2037 RSC; (b) R. Richter, B. Tucker and H. Ulrich, J. Org. Chem., 1983, 48, 1694 CrossRef CAS; (c) R. M. Claramunt, M. C. Foces-Foces, F. H. Cano, A. Fruchier, P. Molina, M. Alajarin, C. L. Leonardo and J. Elguero, J. Chem. Soc., Perkin Trans. 2, 1990, 1859 RSC.
  18. Melamine is the cyclic trimer compound of cyanamide (H6C3N6m/z 126).
  19. Field desorption MS of the reaction mixture did show three compounds with molecular ions at m/z 42, 84 and 126 (cyanamide, a dimer and a trimer), however we were only able to isolate melamine and cyanamide.
  20. (a) E. Finkelstein, G. M. Rosen and E. J. Rauckman, J. Am. Chem. Soc., 1980, 102, 4994 CrossRef CAS; (b) J. R. Harbour, V. Chow and J. R. Bolton, Can. J. Chem., 1974, 4, 3549.
  21. Increasing DMPO concentration to greater than 100 mole equivalents relative to cyanamide resulted in the formation of only DMPO–OH spin adduct and no compound 2.
  22. E. Finkelstein, G. M. Rosen, E. J. Rauckman and J. Paxton, Molecular Pharmacology., 1979, 16, 676 Search PubMed In this reference, the authors suggest that superoxide radical can be quantified using 2,5,5-trimethyl-4,5-dihydro-3H-pyrrole N-oxide (TMPO). However it should be noted that unfortunately, TMPO-trapped hydroxyl and perhydroxyl radicals fortuitously have the same nitrogen coupling constants.
  23. D. Klug, J. Rabini and I. Fridovich, J. Biol. Chem., 1972, 247, 4839 CAS In this reference, the authors report SOD activity was not affected by changes in pH over the range 4.8–9.5.
  24. I. Yamakzaki, L. H. Piette and T. A. Grover, J. Biol. Chem., 1990, 265, 652 CAS.
  25. E. G. Janzen and J. I.-P. Liu, J. Mag. Reson., 1973, 9, 510 CAS.
  26. Analogous oxidation products have been shown for PBN–OR spin adducts see: E. G. Janzen, C.-R. Lin and R. D. Hinton, J. Org. Chem., 1992, 57, 1633 Search PubMed.
  27. (a) J. Gierer, Holzforschung, 1997, 51, 34 Search PubMed; (b) J. Gierer, E. Q. Yang and T. Reitberger, Holzforschung, 1994, 48, 405 Search PubMed.
  28. (a) T. Matsuura, A. Nishinaga, N. Yoshimura, T. Arai, K. Omura, H. Matsushima, S. Kato and I. Saito, Tetrahedron Lett., 1969, 21, 1673 CrossRef; (b) A. Nishinaga, T. Itahara and T. Matsuura, Tetrahedron Lett., 1974, 51/52, 4481 CrossRef; (c) J. Gierer and F. Imsgard, Acta Chem. Scand., 1977, B31, 537 Search PubMed.
  29. J. F. Kadla, H.-m. Chang, C.-L. Chen and J. S. Gratzl, Holzforschung, 1998, in the press Search PubMed.
  30. P. D. Morse II, Biophys. J., 1987, 51, 440a.
Click here to see how this site uses Cookies. View our privacy policy here.