Kinetics and mechanism of tetrazole-catalyzed phosphoramidite alcoholysis

(Note: The full text of this document is currently only available in the PDF Version )

Erkki J. Nurminen, Jorma K. Mattinen and Harri Lönnberg


Abstract

Kinetics of the tetrazole-catalyzed reaction of diisopropyl N,N-diisopropylphosphoramidite (1b) with tert-butyl alcohol has been studied by 31P NMR spectroscopy in THF, and the results obtained have been compared to those observed for the possible partial reactions involved, viz. the formation of diisopropyl tetrazolylphosphite (2b) and its subsequent alcoholysis. The stoichiometry of the processes was first examined with dimethyl N,N-diisopropylphosphoramidite (1a) in MeCN. The tetrazole-promoted disappearance of 1b is as fast in the absence and in the presence of the alcohol: the alcoholysis of 1b is zero-order in the concentration of alcohol and second-order in the concentration of tetrazole. The reaction of 1b with tetrazole is independent of the concentration of the tetrazolide anion and second-order in that of tetrazole, while the reverse reaction, aminolysis of 2b is first-order in the concentration of the amine. The alcoholysis of 2b is, in turn, first-order in the concentration of alcohol and second-order in that of tetrazole, but it also proceeds, although slowly, in the absence of tetrazole. The time-dependent product distribution of the alcoholysis of 1b shows intermediary accumulation of 2b, but at a lower level than could be predicted by applying the rate constants determined independently for the assumed partial reactions. Accordingly, tetrazole-catalyzed alcoholysis of 1b is shown to proceed at least mainly via 2b, but an additional pathway not involving 2b as an intermediate is proposed. Mechanisms of the partial reactions are discussed on the basis of the formal kinetics observed.


References

  1. É. E. Nifant'ev and M. K. Grachev, Russ. Chem. Rev. (Engl. Transl.), 1994, 63, 575 Search PubMed; Usp. Khim., 1994, 63, 602 Search PubMed.
  2. S. L. Beaucage and R. P. Iyer, Tetrahedron, 1992, 48, 2223 CrossRef CAS.
  3. (a) B. H. Dahl, J. Nielsen and O. Dahl, Nucl. Acids Res., 1987, 15, 1729 CAS; (b) O. Dahl, Phosphorus Sulfur, 1983, 18, 201 Search PubMed.
  4. S. L. Beaucage, Tetrahedron Lett., 1984, 25, 375 CrossRef CAS.
  5. É. S. Batyeva, V. A. Al'fonsov, G. U. Zamaletdinova and A. N. Pudovik, Russ. J. Gen. Chem. (Engl. Transl.), 1976, 46, 2120; Zh. Obshch. Khim., 1976, 46, 2204 Search PubMed.
  6. É. E. Nifant'ev, M. K. Gratchev, S. Yu. Burmistrov, L. K. Vasyanina, M. Yu. Antipin and Yu. T. Struchkov, Tetrahedron, 1991, 47, 9839 CrossRef CAS.
  7. D. Gonbeau, G. Pfister-Guillouzo, M.-R. Mazières and M. Sanchez, Can. J. Chem., 1985, 63, 3242 CAS.
  8. (a) A. A. Korkin and E. N. Tsvetkov, Russ. J. Gen. Chem. (Engl. Transl.), 1987, 57, 1929; Zh. Obshch. Khim., 1987, 57, 2155 Search PubMed; (b) A. A. Korkin, A. M. Mebel and E. N. Tsvetkov, Russ. J. Gen. Chem. (Engl. Transl.), 1988, 58, 900; Zh. Obshch. Khim., 1988, 58, 1015 Search PubMed; (c) A. A. Korkin and E. N. Tsvetkov, Bull. Chem. Soc. Fr., 1988, 335 Search PubMed; (d) A. A. Korkin and E. N. Tsvetkov, Russ. J. Inorg. Chem. (Engl. Transl.), 1989, 34, 161; Zh. Neorg. Khim., 1989, 34, 295 Search PubMed.
  9. (a) S. Yu. Burmistrov, L. K. Vasyanina, M. K. Grachev and É. E. Nifant'ev, Russ, J. Gen. Chem. (Engl. Transl.), 1989, 59, 2360; Zh. Obshch. Khim., 1989, 59, 2639 Search PubMed; (b) É. E. Nifant'ev, M. K. Gratchev, S. Yu. Burmistrov, M. Yu. Antipin and Yu. T. Struchkov, Phosphorus Sulfur, 1992, 70, 159 Search PubMed.
  10. (a) G. I. Koldobskii and V. A. Ostrovskii, Russ. Chem. Rev. (Engl. Transl.), 1994, 63, 797 Search PubMed; Usp. Khim., 1994, 63, 847 Search PubMed; (b) S. J. Wittenberger, Org. Prep. Proced. Int., 1994, 26, 499 CrossRef CAS.
  11. (a) S. Berner, K. Mühlegger and H. Seliger, Nucl. Acids Res., 1989, 17, 853 CAS; (b) S. Berner, K. Mühlegger and H. Seliger, Nucleosides, Nucleotides, 1988, 7, 763 CAS.
  12. E. S. Batyeva, V. A. Al'fonsov and A. N. Pudovik, Dokl. Chem. (Engl. Transl.), 1988, 303, 332; Dokl. Akad. Nauk SSSR, 1988, 303, 632 Search PubMed.
  13. B. G. Cox, Modern Liquid Phase Kinetics, Oxford University, New York, 1994, p. 10 Search PubMed.
  14. The solubility of DIAT in THF is less than 10 mg dm–3, and hence an extremely small amount of the salt is sufficient to give a saturated system without the accuracy-lowering drawbacks of excessive precipitation.
  15. K. A. Petrov, É. E. Nifant'ev, T. N. Lysenko and V. P. Petrov, Russ J. Gen. Chem. (Engl. Transl.), 1961, 31, 2214; Zh. Obshch. Khim., 1961, 31, 2377 Search PubMed.
  16. Y. Watanabe, S. Maehara and S. Ozaki, J. Chem. Soc., Perkin Trans. 1, 1992, 1879 RSC.
  17. O. J. Scherer and N. Kuhn, Chem. Ber., 1975, 108, 2478 CAS.
  18. J. W. Perich and R. B. Johns, Synthesis, 1988, 142 CrossRef CAS.
  19. É. E. Nifant'ev, M. K. Grachev, S. Yu. Burmistrov and L. K. Vasyanina, Russ. J. Gen. Chem. (Engl. Transl.), 1988, 58, 895; Zh. Obshch. Khim., 1988, 58, 1011 Search PubMed.
  20. The software is available at http://www.almaden.ibm.com/st/msim/ordrform.html(19.11. 1997).
Click here to see how this site uses Cookies. View our privacy policy here.