Ab initio study of the pseudorotation and conformational stability of pyrrolidine

(Note: The full text of this document is currently only available in the PDF Version )

Luis Carballeira and Ignacio Pérez-Juste


Abstract

The energy profile for the pseudorotational process of pyrrolidine has been investigated with several ab initio computational methods, and both stable conformers and transition states have been characterized. Theoretical calculations show that pseudorotation is the path preferred for interconversion between the N–H axial and equatorial forms, with a barrier of approximately 0.6 kcal mol–1. MP2/6-31G** results agree acceptably well with the experimental data from microwave spectroscopy, electron diffraction and vibrational frequencies, which suggest that electron correlation is needed to obtain a reliable description of the conformational preferences. The existence of a free-pseudorotation region predicted by correlated calculations allows the contradictions between the previously reported interpretations of experimental work to be eliminated. The natural bond orbitals (NBO) method was applied on the HF/6-31G** wavefunctions to confirm the existence of delocalization due to the nitrogen lone pair. The relationship between delocalization and the puckering of the axial and equatorial envelope forms is discussed.


References

  1. J. Laane, Pseudorotation of Five-Membered Rings, in Vibrational Spectra and Structure, ed. J. R. Durig, Marcel Dekker, New York, 1972, vol. 1 Search PubMed.
  2. A. C. Legon, Chem. Rev., 1980, 80, 231 CrossRef CAS.
  3. H. L. Strauss, Ann. Rev. Phys. Chem., 1983, 34, 310 CrossRef.
  4. W. J. Adams, H. J. Geise and L. S. Bartell, J. Am. Chem. Soc., 1970, 92, 5013 CrossRef CAS.
  5. H. J. Geise, W. J. Adams and L. S. Bartell, Tetrahedron, 1969, 25, 3045 CrossRef CAS.
  6. G. G. Engerholm, A. C. Luntz, W. D. Gwinn and D. O. Harris, J. Chem. Phys., 1969, 50, 2446 CAS.
  7. B. Cadioli, E. Gallinella, C. Coulombeau, H. Jobic and G. Berthier, J. Phys. Chem., 1993, 97, 7844 CrossRef CAS.
  8. D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1358 CrossRef CAS.
  9. J. A. Dobado, J. Molina Molina and M. Rodríguez Espinosa, J. Mol. Struct. (THEOCHEM), 1994, 303, 205 CrossRef.
  10. S. J. Han and Y. K. Kang, J. Mol. Struct. (THEOCHEM), 1996, 362, 243 CrossRef CAS.
  11. J. E. Kilpatrick, K. S. Pitzer and R. Spitzer, J. Am. Chem. Soc., 1947, 69, 2483 CrossRef CAS.
  12. D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354 CrossRef CAS.
  13. D. Cremer, Isr. J. Chem., 1980, 20, 12 CAS.
  14. D. Cremer, J. Phys. Chem., 1990, 94, 5502 CrossRef CAS.
  15. D. L. Hildenbrand, G. C. Sinke, R. A. McDonald, W. R. Kramer and D. R. Stull, J. Chem. Phys., 1959, 31, 650 CrossRef CAS.
  16. J. C. Evans and J. C. Wahr, J. Chem. Phys., 1959, 31, 655 CrossRef CAS.
  17. J. P. McCullough, D. R. Douslin, W. N. Hubbard, S. S. Todd, J. F. Messerly, I. A. Hossenlopp, F. R. Frow, J. P. Dawson and G. Waddington, J. Am. Chem. Soc., 1959, 81, 5884 CrossRef CAS.
  18. K. S. Pitzer and W. E. Donath, J. Am. Chem. Soc., 1959, 81, 3213 CrossRef CAS.
  19. R. W. Baldock and A. R. Katritzky, J. Chem. Soc. B, 1968, 1470 RSC.
  20. P. J. Krueger and J. Jan, Can. J. Chem., 1970, 48, 3236 CAS.
  21. J. B. Lambert and W. L. Oliver, Jr., J. Am. Chem. Soc., 1969, 91, 7774 CrossRef CAS.
  22. J. B. Lambert, J. J. Papay, E. S. Magyar and M. K. Neuberg, J. Am. Chem. Soc., 1973, 95, 4458 CrossRef CAS.
  23. E. Breuer and D. Melumad, J. Org. Chem., 1973, 38, 1601 CrossRef CAS.
  24. J. B. Lambert, J. J. Papay, S. A. Khan, K. A. Kappauf and E. S. Magyar, J. Am. Chem. Soc., 1974, 96, 6112 CrossRef CAS.
  25. R. O. Duthaler, K. L. Williamson, D. D. Giannini, W. H. Bearden and J. D. Roberts, J. Am. Chem. Soc., 1977, 99, 8406 CrossRef CAS.
  26. W. Caminati, H. Oberhammer, G. Pfafferott, R. R. Filgueira and C. H. Gomez, J. Mol. Spectrosc., 1984, 106, 217 CAS.
  27. G. Pfafferott, H. Oberhammer, J. E. Boggs and W. Caminati, J. Am. Chem. Soc., 1985, 107, 2305 CrossRef CAS.
  28. S. J. Han and Y. K. Kang, J. Mol. Struct. (THEOCHEM)., 1996, 369, 157 CrossRef CAS.
  29. L. Carballeira and I. Pérez-Juste, J. Org. Chem., 1997, 62, 6144 CrossRef CAS.
  30. L. Carballeira and I. Pérez-Juste, J. Comput. Chem., in the press Search PubMed.
  31. P. Pulay, Mol. Phys., 1969, 17, 197 CAS.
  32. P. Pulay, Mol. Phys., 1970, 18, 473 CAS.
  33. H. B. Schlegel, J. Chem. Phys., 1982, 77, 3676 CrossRef CAS.
  34. J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Int. J. Quantum Chem., Symp., 1979, 13, 225 Search PubMed.
  35. C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS.
  36. J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quantum Chem., Symp., 1977, 11, 149 Search PubMed.
  37. R. Krishnan and J. A. Pople, Int. J. Quantum Chem., 1978, 14, 91 CrossRef CAS.
  38. R. Krishnan, M. J. Frisch and J. A. Pople, J. Chem. Phys., 1980, 72, 4244 CrossRef CAS.
  39. T. K. Brunck and F. Weinhold, J. Am. Chem. Soc., 1978, 102, 1700.
  40. J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211 CrossRef CAS.
  41. A. E. Reed and F. Weinhold, J. Chem. Phys., 1985, 83, 1736 CrossRef.
  42. A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735 CrossRef CAS.
  43. A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 CrossRef CAS.
  44. U. Salzner and P. v. R. Schleyer, J. Org. Chem., 1994, 59, 2138 CrossRef CAS.
  45. U. Salzner, J. Org. Chem., 1995, 60, 986 CrossRef CAS.
  46. Gaussian 94 (Revision B.2), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995 Search PubMed.
  47. For the sake of brevity, only the MP2/6-31G** optimized geometries are displayed in Table 2. The detailed geometries of the stationary points at the HF/3-21G and HF/6-31G** levels can be requested from the authors.
  48. B. J. Teppen, M. Cao, R. F. Frey, C. Van Alsenoy, D. M. Miller and L. Schäfer, J. Mol. Struct. (THEOCHEM), 1994, 314, 169 CrossRef.
  49. E. Magnusson, J. Am. Chem. Soc., 1993, 115, 1051 CrossRef CAS.
  50. K. B. Wiberg, C. M. Hadad, T. J. LePage, C. M. Breneman and M. J. Frisch, J. Phys. Chem., 1992, 96, 671 CrossRef CAS.
  51. L. Schäfer, C. Van Alsenoy, J. O. Williams, J. N. Scarsdale and H. J. Geise, J. Mol. Struct. (THEOCHEM), 1981, 76, 349 CrossRef.
  52. P. J. Krueger and J. Jan, J. Chem., 1970, 48, 3229 Search PubMed.
  53. F. Bohlmann, Chem. Ber., 1958, 91, 2157 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.